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A b s t r a c t . In this paper, mode shapes of a 3D cracked beam with a rectangular cross 
section are analyzed for crack detection The mfluence of coupling mechanism between 
horizontal and vertical bending vibrations due to the 3D crack model on the mode shapes 
is investigated. Due to the coupling mechanism the mode shapes of a beam are twisted 
in space. They change from plane curves to space curves. This phenomenon can be used 
for crack detection. The existence of the crack can be detected when the mode shapes axe 
space curves Also, the mode shapes of a cracked beam bridge have distortions or sharp 
changes at the crack position. Therefore, the position of the crack can be determined as a 
position at which the mode shapes exhibit such distortions or sharp changes. Moreover, 
using the mode shapes in 3D crack model, a crack with depth as small as 1% of the beam 
height can be detected, while in previous studies using 2D crack mode!, distortions in 
the mode shapes caused by a small crack cannot be detected. These results are new and 
can be used for crack detection of a beam bridge The stiffness matrix of a 3D cracked 
element obtained from fracture mechanics is presented and numerical simulations are 
provided in this paper. 
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1. I N T R O D U C T I O N 

The existence of a crack in a structm-e will influence its d\Tiamic characteristics 
such as natural frequencies and mode shapes. Therefore, information from the natural 
frequencies and mode shapes is useful for crack detection. The most important problem 
for analysing the vibration of a cracked beam is to model the local stiffness at the crack 
position. Chondros et al. [1] developed a continuous cracked beam vibration theorj' for the 
lateral vibration of cracked Euler-Bernoulh beams with single-edge or double-edge open 
cracks. The crack was modelled as being continuously flexible using the displacement 
field in the vicinity of the crack found in fracture mechanics. Lee et al. [2] studied the 
influence of a crack on natural frequencies and mode shapes of a beam. The stiffness 
matrix of the cracked beam is derived from a flexibility matrix calculated from fracture 
mechanics. Sadettin Orhan [3] investigated the influences of the depth and location of the 
crack on the natural frequency of a cracked beam. In this study, the flexibility matrix of 
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the crack was calculated by using the stress intensity factors based on the finite element 
method (FEM). A perturbation method and a transfer matrix approach were proposed 
by Gudmundson [4] to investigate the influence of small cracks on the natural frequencies 
of slender structures. Zhang et al. [5] presented a method using the transform matrix to 
calculate frequencies and mode shapes of a cracked cantilever beam. Some authors [6-9] 
modelled cracks as massless rotational springs, whose stiffness were obtained from fracture 
mechanics to study the natural frequencies and mode shapes of cracked beams. Recently, 
the author of this paper [10] presented a vibration based method for open and breathing 
crack detection of a beam bridge subjected to a moving vehicle. The stiffness matrix of a 
breathing cracked element was calculated from the stiffness matrix of the intact and open 
cracked element wliich was obtained from fracture mechanics. 

Most of the researches model the beams as ID and 2D structures for investigating 
pure longitudinal or bending vibrations, only few of the current works used the 3D beam 
model to study more compficated vibrations of the beams. The coupled bending and 
longitudinal vibration of a cracked rotor were studied by Papadopoulos et al. [11]. Coupled 
bending, longitudinal and torsional vibrations of a cracked rotor were investigated by 
Darpe et al. [12]. Saavedra et al. [13] investigated the frequency of forced vibration of a 3D 
cracked beam. In these works, the 12 x 12 stiffness matrices of a cracked element obtained 
from fracture mechanics were applied. However, in these works only forced vibrations were 
investigated while the influence of a 3D crack on the dynamic characteristics of a beam 
such as frequency and mode shape had not been considered and compared with that of 
the ID and 2D beams. 

From the above mentions, this paper analyses the influence of the 3D crack model 
on the dynamic characteristics of a beam bridge for crack detection purpose. The influence 
of the coupUng mechanism between horizontal bending and vertical bending vibrations on 
the mode shapes of beam due to the 3D crack model is investigated. It is interesting to 
show that, while the mode shapes of the intact beam are plane curves, the mode shapes 
of the cracked beam are twisted in the 3D space and become space curves. Moreover, 
there are distortions or sharp changes in these mode shapes at the position of the crack. 
These distortions can be inspected visually with a very small crack by amplifying the 
mode shapes to an appropriate scale. In this study, the detection of a crack with depth as 
small as 1% of the beam height is illustrated. This result is new and can be applied for 
crack detection of a beam. The stiffness matrix of the beam obtained from the fracture 
mechanics and the numerical simulation are presented m this paper. 

2. FREE VIBRATION OF A N INTACT BEAM IN 
FINITE ELEMENT METHOD 

In this study, the bridge is considered as an Euler-Bernoulli uniform beam with a 
constant rectangular cross-section. The beam is divided by R elements in finite element 
analysis. The governing equation of undamped free vibration of the beam can be written 
following the finite element method as follows [14] 

M d - h K d - 0 (1) 



Crack detection of a m-hke bridge using 3D mode shapes 

where M, K are structural mass and stiffness matrices; d is a column vector which denotes 
the displacement of the beam. 

The solution of Eq. (1) can be found in the form of 

d = .pe (2) 
Here ip is the amplitude of the nodal displacement, ^' is the natural frequenc}' of the 

beam, and t is the time. Substituting Eq. (2) into Eq. (1), we have 

[K-u.'^M]^ = 0 (3) 

[K - AM] V? = 0 (4) 

A - w' (5) 

Eq. (4) is called the eigenvalue equation. To have a non-zero solution for tp, the 
determinant of the matrix must be zero 

det [K - AM] = |K - AMI = 0 (6) 

A'̂  roots Al, A2,..., AA', called eigenvalues will be determined by solving this equa­
tion, where N is the number of DOFs. By substituting these eigenvalue Â  back into the 
eigenvalue Eq. (4) and solving this equation the eigenvector '.p will be obtained. 

3. FINITE ELEMENT MODEL OF A CRACKED BEAM WITH 
RECTANGULAR CROSS SECTION 

Considering a uniform beam bridge with rectangular cross section with a crack 
located at the distance L^ from the left end. Fig. 1 presents the model of 3D cracked 
element with 12 degrees of freedom. The element is loaded with shear forces P2, F3, Pg, 
Pg, bending moments P4. P5, P n , P12, axial forces Pi, Pr, and torsional moments P4, PIQ. 

Fig. 1. Model of the cracked element 

The stiffness matrix of a cracked element can be derived from the flexibifity matrix 

as follows [12]. 
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Using Castingliano's theofem, a component c„ of the total flexibility matrix C is 
the sum of the flexibihty coefficient of the intact element and the additional flexibility 
coefficient due to the crack 

where the flexibility coefficient of the intact element is 

,(0, _ a^wf). 

and the additional flexibility coefficient is 

,(1) _ a^w'" 

; , j = l ,2 , ...,6 (8) 

i , j = 1,2,..,6 (9) 

Here, I^^"' is the strain energy of the uncracked element; W^'^' is the strain energy 
due to the crack. 

The elastic strain energy of the element can be obtained by considering the action 
of axial forces, shear forces, torsion and bending moments at the cross section of the crack 
as follows [12] 

2 [AE GA GA iEh EI, iEI, SEIy ^ EI, Ely GIo\ 
(10) 

Where G is the modulus of rigidity, E is Young's modulus; A is the cross section 
area; ly, I^ are the inertia moments of the cross section about y and z axes, respectively; 
Jo is the polar moment of inertia of the cross section; K is the shear coefficient. 

The additional energy due to the crack of a rectangular element with thickness h 
and width b can be expressed as follows 

W^ " = / -; E' E'f.. + E^n. +WE^. (11) 

1-1/2 
type, shding type and tearing type cracks, respectively; i = 1,2,..., 6. 

Stress intensity factors are obtained from reference [15] 

ifil =(TiV^J',(a),CTl = ^ , J(-,5 = Ci^^Fi(a).as = ^^^, 

Kie = <r6VirQF2(Q), "6 = vrf, X"i2 = K13 = Ku = 0, 

Ku2 = t r 2 \ / ^ f l i ( a ) , 0-2 = ^ , Kiu = CT4v/^Fn(Q), 0-4 = ~ , (12) 

Km = Ku3 = Kna = Kue = 0, if„,3 = a^^/l^Fiuia), 1x3 = ^ 
oh 

Kuu = £r4niv^i^iii(a), a,ni = TT, Kmi = Kun = iCiiis = Kim = 0 
on 
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Here Q is the crack depth variable, a = 

(13) 

The stiffness matrix of the cracked element is derived as follows [16] 

K ,̂ = T ' ^ ' C " ^ T 

where T is the transformation matrix 

(14) 
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where / is the length of the element. The stiffness and mass matrices for a 3D element 
without a crack are obtained from the finite element method as follows 
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Where a : / —, and l^, ly, / ; are second moments of area (or moments of 
-i a 

inertia) of the cross-section of the beam with respect to the x, y and z axes; IQ is the polar 
moment of inertia of the cross section; E is the Young's modulus. 

Finally, the global mass matrix M is assembled from the element mass matrices 
nie and the global stiffness matrix K of the cracked beam is assembled from the element 
stiffness kp and k,̂ . By substituting these matrices M and K into Eqs. (4)-(6) and solving 
them, the eigenvalues and eigenvector of the cracked beam are obtained. 

4. N U M E R I C A L SIMULATION A N D DISCUSSIONS 

A numerical example of a beam like bridge with a crack located at the position of 
L/3 from the left end is analyzed. The beam is divided by 50 elements. The boundary 
conditions at the two ends of the beam are as follows. At the left end: translations in the 
X, y, z directions and rotations about the x, y axes are fixed, while the rotation about the 
z axis is free. At the right end: the rotation about the z axis and the translation in the x 
direction are free, while translations in the y, z directions and rotations about the x, y axes 
are fixed. Parameters of the beam are: Mass density is 7800 kg/m^; modulus of elasticity 
P = 2.1 X 10^^ N/m^; L = 50m;b = lm;h = 2m.la order to investigate the influence 
of the crack depth on the mode shapes of the beam four levels of the crack from zero to 
30% are applied. These four cases are numbered as in Tab. 1. 

Table 1. Four cases with cracks of varying depths 

Case 

1 

2 

3 

4 

C r a c k d e p t h (%) 

0 

10 

20 

30 

The mode shapes are plotted in 3D views by using the values of the three translation 
degrees of freedom m the x, y and z directions of the eigenvector. The first mode shape of 
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the beam bridge with four different levels of crack depth is investigated and presented in 
Figs. 2 to 5. For the intact beam bridge, the first mode shape corresponds to the bending 
vibration in the !/-direction. This mode shape is a plane curve and hes in the x-y plane, 
thus Its projection on the x-z plane is parallel to the i-axis as can be seen fi-om Fig. 2. 

pRQedmn of themofe 

Fig. 2. The first mode shape, crack depth i, Ftg. 3. The first mode shape, crack depth is 10% 

Fig. 4- The first mode shape, crack depth is 20% Fig. 5. The first mode shape, crack depth is 30% 

In this case, the plane curve mode shape means the mode shape Hes on a plane. The 
first mode shape obtained from the 3D crack model lying on the x-y plane corresponds 
to the first mode shape obtained from the 2D crack model. It is interesting to notice 
that, when there is a crack the first mode shape is slightly inclined from the x-y plane in 
the z direction. By amphfying appropriately the magnitude of the mode shape in the z-
direction this incline can be seen clearly. The first mode shape amplified in the 2-direction 
is presented in Fig. 3. The mode shape becomes a space curve and its projection on the x-z 
plane is not parallel to the x-axis as can be seen from this flginre. The space curve mode 
shape means the mode shape does not lie on any plane but it twits in the space. When 
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the crack depth increases, the incline from the x-axis of the projection of mode shape on 
the x-z plane increases as presented in Figs. 4 and 5. 

It can be observed that the projection of the first mode shape on the x-z plane has 
a sharp change at the crack position. In order to investigate the influence of the crack 
depth on the first mode shape, the projections of the mode shape with different levels of 
crack depth are presented in the same graph. Four projections of the first mode shape 
with four different levels of the crack depth are presented in Fig. 6. As can be seen from 
this figure, the projections of mode shape on the x-z plane have sharp changes at the 
location of L/3 which corresponds to the crack position. When the crack depth increases, 
the incline of the projection of the mode shape with respect to the x-axis increases. From 
these observations it is concluded that when there is a crack the first mode shape will be 
inclined from the x-y plane. The position at which the projection of mode shape on the 
x-z plane has a sharp change corresponds to the crack location. Thus, the projection of 
the first mode shape can be used to detect the crack existence and the crack position. The 
existence of the crack is indicated by the change of the first mode shape from the plane 
curve to the space curve. The crack position can be determined by the location at which 
the projection of the first mode shape on the x-z plane has a sharp change. 

Fig. 6 Projections of the first mode shape on Fig 7 Piojections of the first mode shape on 
the x-z plane with foui levels of ciack depth the x-y plane with crack depth of 30% 

The change of the first mode shape from the plane curve to the space curve can 
be explained by the coupling phenomenon between the horizontal and vertical bending 
vibrations caused by the 3D crack. Since the sliding effect can be ignored in front of the 
bending effect as discussed in [13], the coupfing between horizontal bending and vertical 
bending depends mainly on the bending effect of the crack. Numerical simulation has been 
carried out to show that the bending vibration of the beam with a 3D crack is the same 
with that of beam with a 2D crack when the coupling mechanism is disregarded. 

The projection of the first mode shape on the x-y plane of the beam with the crack 
depth of 30% IS presented in Fig. 7 to compare to the 2D crack model. No distortion 
m this projection of the mode shape can be seen at the crack location. This is similar 
to previous results where 2D crack models were apphed [17, 18]: distortions in the mode 
shapes due to the crack cannot be seen visually with a small crack depth, it can only 
be seen with a very large crack depth. This impfies that the projection of the first mode 
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shape on the x-y plane which corresponds to the 2D crack model cannot be used directly 
for crack detection when the crack depth is small. 

Fig. 8 The second mode shape, crack depth is 0% Fig. 9. The second mode shape, crack depth it 

10 \ , ^ ' 

Fig, 10. The second mode shape, crack depth 
is 20% 

mode shape, crack depth 
3 30% 

Figs, from 8 to 13 present the second mode shapes with four levels of crack depth. 
When the crack depth is zero, the second mode shape is a plane curve lying on the x-z 
plane and its projection on the x-y plane is parallel to the x-axis as can be seen in Fig. 
8, When there is a crack, the projection of the second mode shape on the x-y plane is 
not parallel to the x-axis anymore but it inclines from this axis as can be observed from 
Figs. 9 to 12. A small distortion of the mode shape in the 3D view and in the projection 
of the mode shape at the crack position can also be seen from these figures. However, 
this distortion of the mode shape is not as clear as the first mode shape. Moreover, no 
distortion can be found in the projection of this mode shape on the x-z plane with a crack 
depth of up to 30% which corresponds to the 2D crack model as presented in Fig, 13. Thus, 
the projection of the second mode shape on the x-y plane is only useful for detecting the 



existence of the crack. The second mode shape and its projection on the x-y plane are not 
useful for determining the position of the crack. 

Fig. 12 Projections of the second mode shape 
on the x-y plane with four levels of crack depth 

Fig. 13 Projections of the second mode shape 
on the x-z plane with crack depth of 30% 

The third mode shape is presented in Figs. 14 to 19. When the crack depth is 
zero, the third mode shape is a plane curve lying on the x-z plane and its projection 
on the x-y plane is parallel to the x axis as can be seen in Fig. 14. When there is a 
crack, the third mode shape inclines from the x-z plane in the y-direction. The pro­
jection of the third mode shape on the x-y plane inclines from the x-axis as can be 
observed from Figs. 15 to 17. The distortion of the mode shape in the 3D view at the crack 
position can also be seen from these figures. This distortion can be 
seen clearer by projecting the mode shape on the x-y plane as shown in Fig. 18. It is 
evident a sharp change in the projection of the third mode shape can be detected at the 
crack location, while no distortion can be detected in the projection of the mode shape in 
the x-z plane as shown in Fig. 19. 

Fig 14. The third mode shape, crack depth is 0% Fig 15 The third mode shape, crack depth is 10% 

From the above discussion, it can be said that ail of the first three mode shapes can 
be used for detection of the crack existence. However, while the first and the third mode 
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shapes are useful for detection of the crack location, it is difficult to use the second mode 
shape for the same purpose. 

Fig 16 The third mode shape, crack depth is 20% Fig. 17. The third mode shape, crack depth is 30% 

Fig. 18. Projections of the third mode shape on Fig. 19. Piojections of the third mode shape 
the x-y plane with foui levels of crack depth the x-z plane with ciack depth of 30% 

Fig. 20. Projection of the first mode shape, crack depth is 1% 
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It should be noted that, in order to compare the influence of the different levels 
of crack depth on the mode shapes in the same graph with the same scale, only three 
levels of crack depth ranging from 10% to 30% are investigated in this paper as presented 
above. However, smaller cracks can still be detected by the applying the mode shapes to 
larger scales. Fig. 20 presents the projection of the first mode shape on the x-z plane with 
the crack depth of 1% ampfified to a scale which is two hundred times larger than the 
normalized scale. It is evident a sharp change in the projection of the third mode shape 
can be detected clearly at the crack location. This means that the proposed method can be 
applied for detection arbitrary small cracks by amplifying the mode shapes to appropriate 

5. S U M M A R Y A N D CONCLUSION REMARKS 

In this paper, the mode shapes of a 3D cracked beam-like bridge are calculated using 
finite element method. The twist of mode shapes caused by a 3D crack can be applied 
for crack detection of a beam-like bridge. The derivation of the stiffness matrix of a 3D 
cracked element derived from fracture mechanics is presented. The concluding remarks 
can be listed as follows: 

It is interesting to notice that, due to the coupling mechanism of the 3D crack model, 
the mode shapes become space curves instead of plane curves. The mode shape in the 3D 
model incHnes from its plane which corresponds to the case of intact beam. 

Therefore, the existence of the crack can be determined by the incline of the mode 
shape from its plane in the case of intact beam or the mode shapes change from plane 
curve to space curves. 

The position of distortions or sharp changes in the mode shapes caused by the crack 
can be determined as the position of the crack. 

The advantage of using the 3D crack model over the 2D crack model is that the 
influence of crack on the mode shapes can be observed visually with arbitrary small crack 
depth by amplifying the mode shapes to appropriate scales. In this paper, the detection of 
a crack with depth as small as 1% is presented, while in previous studies using 2D crack 
models, the distortion of crack can only be inspected from the mode shape with a crack 
depth of lager than 50% [17, 18]. This result is new and can be applied for crack detection 
of a beam, 
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