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Abstract. This paper presents some numerical results of bending and vibration analy­
ses of an unstiffened and stiffened folded laminate composite plate using finite element 
method The effects of fibei orientations, boundaiy conditions, stiffener conditions of the 
plates for deflections, natural frequencies, and the corresponding mode shapes, transient 
displacement responses were considered The Matlab progiamming using lectangular 
isoparametric plate element with five degree of fi'eedom per node based on Mindlin plate 
theoiy was built to solve the pioblems A good agreement is found between the results 
of this technique and other published results available in the literature. 
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1. INTRODUCTION 

Many stiffened flat plates are designed to resist vibration due to dynamical loads. 
The effect of the stiffeners on the vibration behaviors of flat plates is known to be signif­
icant. Thus it is not surprising that a number of papers has been devoted to the study 
of this problem. Because the laminated plates with stiffeners become more and more im­
portant in the aerospace industry and other modern engineering fields, wide attention has 
been paid on the experimental, theoretical and numerical analysis for the static and dy­
namic problems of such structures in recent years. Turkmen and Mecitoglu [1] presented 
a numerical analysis and experimental study of stiffened laminated flat plates exposed to 
blast shock waves. Zhao et al. [2] using an energy approach, investigated the free vibration 
of the stiffened simply supported rotating cross-ply laminated cyhndrical shells Sadek 
and Tawfik [3] presented a higher-order finite element model and studied the behavior of 
concentrically and eccentrically stiffened laminated plates. Kumar and Mukhopadhyay [4] 
used mixing plane stress triangular element and discrete Kirchhoff-Mindlm plate bending 
element to investigate the stiffened laminated composite flat plates. 

Olson and Hazell [5] have presented results from a theoretical and experimental 
comparison study on the vibration characteristics of all clamped and eccentrically stiffened 
isotropic flat plates. They used a triangular finite element in the calculations. Koli [6] 
developed a 9-noded rectangular plate element and 3-noded beam element; the beams are 
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placed along the plate nodal lines to analysis of stiffened laminated plates imder transverse 
loading. Biswal and Ghosh [7] used 4-noded rectangular elements with seven degrees of 
freedom at each node for analysis of stiffened plates. Gangadhara Prusty [8] studied linear 
static analysis of composite hat-stiffened lammated shells using 8-noded rectangular plate 
element and 3-noded beam element. 

All of those analyses only investigated for flat plate with stiffeners. The folded plate 
is not readily available. The folded plate with stiffeners can be used to open the range of 
engineering applications of laminated composite plate. Because, they are lightweight, easy 
to form and economical, and have a much higher load carrying capacity than flat plates. 

Behavior of unstiffened isotropic folded plates has been studied previously by a host 
of investigators using a variety of approaches. Goldberg and Leve [9] developed a method 
based on elasticity. According to this method, there are four components of displacements 
at each point along the joints: two components of translation and a rotation, all lying 
in the plane normal to the joint, and a translation in the direction of the joint. The 
stiffness matrix is derived from equilibrium equations at the joints, while expanding the 
displacements and loadings into the Fourier series considering boundary conditions. Bar-
Yoseph and Herscovitz [10] formulated an approximate solution for folded plates based on 
Vlassov's theory of thin-walled beams. According to this work, the structure is divided 
into longitudinal beams connected to a monolithic structure. Cheung [11] was the first 
author developed the finite strip method for analyzing isotropic folded plates. Additional 
works in the finite strip method have been presented. The difficulties encountered with 
the intermediate supports in the finite strip method [12] were overcome and subsequently 
Maleki [13] proposed a new method, known as compound strip method. Irie et al. [14] 
used Ritz method for the analysis of free vibration of an isotropic cantilever folded plate. 

Perry et al. [15] presented a rectangular hybrid stress element for analyzing a 
isotropic folded plate structures in bending cases. In this, they used a four-node element, 
which is based on the classical hybrid stress method, is called the hybrid coupling element 
and is generated by a combination of a hybrid plane stress element and a hybrid plate 
bending element. Darilmaz et al. [16] presented an 8-node quadrilateral assumed-stress 
hybrid shell element. Their formulation is based on Hellinger-Reissner variational prin­
ciple for bending and free vibration analyses of structures which have isotropic material 
properties. 

For unstiffened composite folded plate, Haldar and Sheikh [17] presented a free vi­
bration analysis of isotropic and composite folded plate by using a sixteen nodes triangular 
element. Suresh and Malhotra [18] studied the free vibration of damped composite box 
beams using four node plate elements with five degrees of freedom per node. 

Recently, Niyogi et al. in [19] reported the analysis of unstiffened and stiffened 
symmetric cross-ply laminate composite folded plates using first-order transverse shear 
deformation theory and nine nodes elements. In their works, only in axis symmetric cross-
ply laminated plates were considered. So that, there is uncoupling between the normal and 
shear forces, and also between the bending and twisting moments, then besides the above 
uncoupling, there is no coupling between the forces and moment terms. Tran Ich Thinh 
et al. in [20-23] presented a finite element method to analyze of bending, free vibration 
and time displacement response of V-shape; W-shape sections and multi-folding laminate 
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plate (which having trapezoidal corrugate plate). In these studies, the effects of folding 
angles, fiber orientations, loading conditions, boundary condition have been investigated. 

In this paper, eight-noded isoparametric rectangular plate elements were used to an­
alyze the stiffened folded laminate composite plate with in-axis configuration and off-axis 
configuration. Some numerical results for bending, natural frequencies, and dynamic re­
sponses ofthe plates under various fiber orientations, stiffener orientations, and boundary 
conditions are investigated. 

2. THEORETICAL FORMULATION 

2.1. Displacement and strain yield 

According to the Reissner-Mindlin plate theory, the displacements (u, v. w) are re­
ferred to those of the mid-plane (u. VQ. w) as 

Uo + zi 
VQ -\- z9y \ and 

dw 

dw 

+ 0X 

dy 
+ 4>y 

Here, dx and 6y are the total rotations, î i and 4>y are the constant average shear 
deformations about the y and x-axes, respectively. The s-axis is normal to the xy-plane 
that coincides with the mid-plane of the laminate positive downward and clockwise with 
X and y. The generalized displacement vector at the mid- plane can thus be defined as 

{d} = {UQ,VQ,WQ.9x.By] 

The strain-displacement relations can be taken as 
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2.2. Finite element formulations 

The Hamilton variational principle is used here to derive the laminate equations of 
motion. The mathematical statement ofthe Hamilton principle in the absence of damping 
can be written as [24] 
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js(\jp{nf{y-}dV-\j{ef[cr}dV 

- ( / {uf{hW + / {ufUMS + {y-V{!c}))dt = 0 

(3) 

In which 

T -\j p{uf{u}dV: U = \j{ef{a}dV; 
V V 

W = j {uf{h}dV + j {uf{fs}dS -f {ufifc} 
V s 

U. T are the potential energy, kinetic energy: W is the work done by externally 
applied forces, u = \u. v. wY' is the displacement of any generic point {x. y. z) in space. 

In laminated plate theories, the membrane {A^}, bending moment [M] and shear 
stress [Q] resultants can be obtained by integration of stresses over the laminate thickness. 
The stress resultants-strain relations can be expressed in the form 

\ {N] \ \ [A„\ \B„\ (0| 1 ( {£-} ] 
{1^1} ) = [Bi,\ \Di,\ [0] {«} ^ (4) 

where 

71 ' t 

{[A„].[B„\.\D,j\) = Y. /• ( [ g g V l , 2 , z ^ ) d z , i , i = 1 . 2 , 6 (5) 

'=' hL 
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\Fil\=Y.l i (\-'^'^l]k)'l^'- / = 5/6; i . j = 4.5 (6) 

''^ hL 
n: number of layers, hk-i-hk: the position of the top and bottom faces of the k"^ layer. 
[Q'tj\k and [C'j]fc: reduced stiffness matrices of the fc"" layer (see [25, 26]). 

In the present work, the eight nodded isoparametric quadrilateral element with five 
degrees of freedom per nodes is used. The displacement field of any point on the mid-plane 
is given by 

8 8 8 

uo = ̂ iV,(e,7;)u,; VQ = Y,^iii-V>i- WQ = Y,^i{^-V>^; 
1=1 1=1 1^1 

8 8 
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where A'',(^.TJ) are the shape function associated with node i in terms of natural coordinates 
(^. T̂ ). The strain field so that can be expressed as 

dx 

= [d]m{qe} = [BU,,oM 

The element stiffness matrix is given by equation 

a 
dx 
0 

a 
dy 
0 

0 

0 

0 

0 

0 
a 

dy 
a 
aJ 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a 
d^ 

a 

0 

0 

0 

a 
dx 
0 

d 

'ITy 

0 

1 

0 

0 

0 

0 

a 

d 
'Tx 

1 

0 

l'=L,4„x40) = / ( l B r ) „ , , m 8 x 8 l B l 8 x * tdAe (8) 

In which [B\ = [\Bi] [82] [Bl] [Bt] [Bs\ [Bel IB7I [Bs] 

\B.]-

• dN, 

dx 
0 

dN, 

dy 

0 

0 

0 

0 

0 

0 

dN, 
ay 

dNi 
dx 

0 

0 

0 

0 

0 

0 

0 

Q 

0 

0 

0 

dN, 

dy 
dN, 
"s7 

0 

0 

0 

dN, 

dx 

0 

dN, 
3y 

0 

N, 

0 

0 

0 

0 

dN, 
dy 

dN, 
dx 

N, 

0 



Tran Ich Think, Bui Van Bmh, Tran Minh Tu 

The element stiffness matrix is given by 

[k], = l{[Bf)[H][B]tdA, 

Ac 

where [H] is the material stiffness matrix given by [H] -

The element mass matrix is given by 

[ml^ jplN^MmdA, 
Ae 

With p is mass density of material, 

[" 

Nodal force vector is expressed as 
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Where q is the intensity of the applied load. For free and forced vibration analysis, 
the damping effect is neglected then the governing equations are [23]: 

[M] {il] -\- [K] {u} = {0} or {[Ml - uj^ [K]} - {0} (13) 

And 
[M]{u} + [K\{u} = f{t) (14) 

In which{u}, {u} are the global vectors of unknown nodal displacement, acceleration, 
respectively. [M]. [K\. f{t) are the global mass matrrx, stiffness matrix, applied load 
vectors, respectively. 

M = i:Ki,: iK] = f2ri- {/(«)} = E{/;(«)} (is) 
1 1 1 

In which [m'l = [Tf [m], [T]; [k^ = [Tf [k]^ [T]; [f% = [Tf { /} , . 
With n is the number of element. 
In this analysis, both of stiffener and folded plates are modeled by eight-noded 

isoparametric rectangular plate element, the membrane and bending terms are coupled, 
as can be clearly seen in Fig. 1 Even more since a rotation of the normal appear as 
unknowns for the Reissner-Mindlin model, it is necessary to introduce a new unknown for 
the in-plane rotation called drilling degree of freedom. Oz- The rotation 9^ at a node is not 
measured and does not contribute to the strain energy stored in the element [23, 27]. The 
technique is used here' Before applying the transformation, the 40 x 40 stiffness and mass 
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5P]iesitB''/-e''/e°«C'e°i 
6 Plies- ie°/-fl°/eVB°/e°'-ffl 

Fig. 1. Global x, y, z and local i ' , j / , z' axes system for folded plate 
element, folding angle Q 

matrices are expanded to 48 x 48 sizes, to insert sixth Q^ drilling degrees of freedom at each 
node of a finite element. The off-diagonal terms corresponding to the Q^. terms are zeroes, 
while a very small positive number, we taken the Qz equal to 10~* times smaller than the 
smallest leading diagonal, is introduced at the corresponding leading diagonal term. The 
load vector is similarly expanded by using zero elements at corresponding locations. So 
that, for a folded element, the displacement vector of each node is [20, 23]: 

Ws = m {n'} (16) 

where u' = [u', u', w'\ is the displacement of a generic point in local coordinate system 
(x",y\z"). 
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is the transformation matrix. 
/,j are the direction cosines between the global and local coordinates. 

3. N U M E R I C A L RESULTS 

Based on the foregoing theoretical formulation, a homemade Matlab code has been 
developed to calculate deflections, natural frequencies and investigating the mode shapes. 
transient displacement response of the folded composite plates with and without stiffeners. 
The stiffeners are modeled as laminated plate elements. In transient analysis, the Xewmark 
method is used with parameters that control the accuracy and stability of Q = 0.25and 
5 = 0.5 (see [23]). 
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3.1. Validation examples 

3.1.1. Example 1: Isotropic stiffened flat plate 

Firstly, to observe the accuracy of the present Matlab code, the isotropic stiffened 
flat plate plotted in Fig. 2 is recalculated, which is a previously reported experimental and 
theoretical example (Olson and Hazell. 1977: Pal and Niyogi, 2008). Dimension parameters 
of the plate are illustrated with i = W = 203 mm, thickness of stiffener m 6.35 mm: width 
of stiffener in 12.7 mm; elastic modulus E = 68.7 GPa, Poisson ratio v = 0.3, density p 
= 2820 kg/m' . The results are compared with numerical results given by Olson [5], Pal 
et al. (191, and experimentally results given by Hazell |5|. In [5], the stiffener is molded by 
beam elements, in (191 the stiffener is molded by nine nodes elements. 

\;....\ :l 

Fig. 2. Sitffended flat plate Fig. 3. First five mode s 
of stiffened flat plate 

The first five natural frequencies obtained from the present code and those obtained 
by Olson, Pal et al, Hazell are present in Tab. 1. The first five mode shapes are shown in 
Fig.3. The results show a good agreement. 

Table 1 Five first natural frequencies of isotropic stiffened flat plate 

Mode 

1 

2 

3 

i 

5 

Frequencies (Hz) 

Present 

721.83 

749.88 

989.71 

999.21 

1407.56 

Numerical results 

|19| 

720.0 

746.5 

988.5 

998.3 

1405.9 

|5| 

718.1 

751.4 

997 4 

1007.1 

1419.8 

Experiment results 

[51 
689 

725 

961 

986 

1376 

In [5] (Olson and Hazell, 1977), the plate portion of the stiffened panels was modeled 
by triangular elements and the stiffeners were modeled by refined beam bending and 
torsion elements. Both in-plane and bending motions in the plate were considered, but in-
plane inertias were neglected. The reasons need to be further investigated. The transverse 
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shear deformation, the rotary inertia of plate and stiffeners are considered in the present 
method. It is obvious that the current model is more advanced. 

3.1.2. Example 2: Isotropic folded plate 

In this example, the five folds folded plate structure illustrated in Fig. 4 is recal­
culated, which is a previously reported by Perry et al. [15] (1992) using a rectangular 
hybrid shell element and by Darilmaz et al. [16] (2006), using an 8-node assumed stress 
hybrid element. The dimensions of the structure are of L ^ 1 m; the width of L2 ^ L-. 
and thickness of t = 0.05 m. 

(a) (b) (c) 
Fig. 4' Five first mode shapes of stiffened flat plate, (a) Geometry ofthe plate with 
two edges AB and CD. simply supported, (b) Deformed plate with 108 elements, 
(c) Deformed plate with 192 elements 

Table 2. Comparison of deflection (w) at points M and N and convergence of 
natural frequencies (Hz) for the five folds folded plate with simply supported edges 

Number of elements 

48 

108 

192 

Source 

Perry et ai.[15] 

ANSYS |15| 

Darilmaz et al [16] 

Present 

Present 

Perry et at,[15) 

ANSYS |15| 

Darilmaz GL al [16] 

Present 

Deflections 

WAV 

-0.12171 

-0.12180 

-0.12133 

-0.12378 

-0.12229 

-0 12177 

-0 12170 

-012163 

-012243 

WA, 

-0.13101 

-0.12940 

-0 12842 

-0.13446 

-0.13.189 

-0 13114 

-013050 

-0.13043 

-0.13353 

Natural frequencies (Hz) 

f, 

-
-
-

2.82 

2 78 

2.78 

h 

-

-
12.86 

12.76 

12 76 

h 

14 54 

14.38 

14 39 

!., 

• 

27 63 

27 47 

27 46 

The boundary condition: two edges AB and CD: simply supported: u = v = w = 9, 
= 0, Knife-edge loading (9 = 100 kN/m) of the center line of the upper plate is considered 
for static analysis The material properties used are as. E — 2.1x10^ N/cm^. v — 0.3. 

Because the compatible finite elements are used, the natural frequencies should 
converge to the values of the mathematical model, as the number of elements is increased. 
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The results, as listed in Tab. 2, show that the reasonable convergence has been achieved 
with relatively small decrements in the first four frequencies.ts. 

In the subsequent finite element models, the plate is divided by 192 eight-noded 
isoparametric rectangular plate elements. In Tab. 2. deflections at point M and N obtained 
by Perry et al. [15] and Darilmaz et al. [16] are given together with the present results for 
comparison. It is observed that the deflections are in good agreement. 

In the following subsections, several new numerical examples have been analyzed. 

3.2. Study cases of: folded laminated plate 
Consider a five folds folded composite plate shown in Fig. 5, the material properties 

are shown in Tab. 3, L ^ 1 m, total thickness ( ^ 0.02 m, folding angle a = 120°. Lami­
nation schemes: symmetric and anti-symmetric in-axis configurations [0°/90°/0''/90°/0°]; 
[07907079070790°] and off-axis configurations [d°/-e°/e°/-S°/9°]; [B° j-B^IQ^'j-B''fW^j-
^°] are constructed. The reasons that we are take the configurations to investigate in this 
section are [26]: For symmetric laminates, from the definition of [S,j] (see Eq. (5)) matrix, 
it can be proved [-B̂ j] = 0. So that, there is uncoupling between the bending deformor 
tions and shear strains. Add-on. if the plate has an in-axis configurations, it is not only 
symmetric, giving [By] = 0, but also A\^ = A25 = Bie = B26 = Die= D26 = 0- So that, 
there is also uncoupling between the bending and twisting. For anti-symmetric laminate, 
the matrix [B,j] is not equal to zero and if it consists of alternating +0 and -6 plies, the 
plate has higher shear stiffness and shear strength properties. 

(a) - Case I (b) - Case 2 (c) - Case 3 (d) - Case 4 
Fig. 5. Geometry of stiffened folded composite plate and knife-edge loading conditions 

Table 3. Graphite-Epoxy (AS4/3501) material properties. 

£i(GPa) 

144.8 

£2 (GPa) 

9.67 

Gu (GPa) 

4.14 

G23 (GPa) 

3.45 

Gi3 (GPa) 

4.14 

"12 P (kg/m') 

0.3 1500 

Four following cases for different stiffener orientations are studied: 
Case 1. Unstiffened folded composite plate (Fig. Sa), including 192 elements. 
Case 2. Six i-stiffeners are attached below the folded plate running along the length 

of the clamped edges (Fig. 5b) with total mass increment of 10% (width of stiffening plate 
taken equal to 5cm and thickness remaining same as the original folded plate) with 192 of 
elements used for plate and 48 of elements used for six x-stiffeners. 
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Case 3. Two y-stiffeners are attached below the folded plate along transverse direc­
tion (Fig. 5c) with total mass increment of 9.78% (width of stiffening plate taken equal 
to Scm and thickness remaining same as the original folded composite plate)with 192 of 
elements used for plate and 48 of elements used for two y-stiffeners. 

Case 4. Six rc-stiffeners and one y-stiffeners (which having the same geometry) are 
attached below the folded plate with total mass increment of 14.89% (Fig. 5d) with 192 
of elements used for plate; 48 of elements used for six i-stiffeners and 24 of elements used 
for one y-stiffener. 

The boundary conditions are 
- Simply supported: at edges AB and CD: u= v = w= 8^= 0. 
- Clamped: at edges AB and CD: u = v = w^ 6^ = 6y= 9^= 0. 

- Cantilever plate: clamped all edges at x = 0 (except the edges of stiffeners). 

3.3. Bending behaviors of s t i^ener orientations 
The example deals with the effect of stiffener orientations on deflections of the plate 

subjected to a knife-edge loading q = 10 kN/m, towards the negative direction of the 3-xis 
(plotted in Fig. 5). The plates with constant thickness ( = 0.02m are considered in all 
cases. 

Two boundary conditions: simply supported at edges AB, CD and clamped at edges 
AB, CD are taken for the analyses. 

The deflections along the central line (y = L) of individual top plate for four cases 
are compared in Fig. 6 - Fig. 7 with the same scale for each. 

-I- For 5 plies [45°/ - 45°/45°/ - 45''/45°] with the same thickness 
t, = i/5-

-0 25 

.0 75 

I 

Simpty supponed al AB avi CD 

— - ' ' • - — , 

.O B- * — - H 0 - , 

:^zz: 
^ > : : = d — i 8 »—'^~ - *^ 

(a) (b) 
Fig. 6. Effects of stiffener orientation on deflections of the five folds folded com­
posite plate, 5 plies |45V - 45°/457 - 45°/45°| , thickness (, = (/5. 

From Fig. 6 and Fig. 7, it is seen that the deflections of case 3 are least, although 
addition in mass is least in this case. The deflections of case 1 and case 2 are very closed 
to each others among all boundary conditions and layup sequencies schemes. When case 
2 is reinforced by one y-stiffener with a mass increment of about 4.78%. the deflection is 
significantly smaller than the one of before reinforcement. However, although total mass 
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increment of 14.78%, the deflections of case 2 are still higher than the deflections of case 

3. 
4- For 6 plies [45°/ - 45°/45°/ - 45°/45°/ - 45°] with the same thickness oft, = (/6. 

-025 

1 -

-0-75 

I I -

-1 

•1-25 

, - D -

Sim(*y 

- D — 

= W « e d « 

- B - — - B -

-a-c7s 

ABand 

— • B -

* 

CO 

—a— - D . 
-. 
• -1 

(b) 
Fig. 7. Effects of stiffener orientation on deflections of the five folds folded com­
posite plate, 5 plies [457 - 457457 - 457457 - 45°] , thickness ti = t/6. 

It is observed that case 3 is the best process of reinforcement for bending with 
the above loading scheme and case 2 is the worst process of reinforcement. For both of 
boundary conditions: clamped or simply supported at edges AB and CD, bending ability 
of the plate descended from case 3 to case 4. case 2 and case 1. 

For symmetric and anti-symmetric in-axis configurations, bending behaviors of the 
plates are similar but they are giving less deflections. 

3.3.1. Free vibration analysis 

In this section, free vibration of the same unstiffened and stiffened five folds folded 
composite plate is carried out to investigate the effect of stiffener orientations. The bound­
ary conditions are: simply supported at edges AB, CD and clamped at edges AB, CD; The 
lamination schemes are: symmetric: anti-symmetric in-axis configuration and off-axis con­
figuration. Five first natural frequencies of the plates were computed and listed in Tab. 4 
and Tab. 5 for the simply supported condition and clamped condition, respectively. 

Five corresponding first mode shapes are available in Fig. 8 for the lay-up sequences 
[45°/ - 45°/45°/ - 45°/45°/ - 45°] which giving comparisons of simply supported plate 
for different stiffeners orientations. 

From Tab. 4 and Tab. 5, it is observed that, Case 3 gives the highest natural fre­
quencies among the four cases, although addition in mass is least in the stiffened folded 
plates; 

the natural frequencies of Case 2 (with total mass increment of 10%) are least. This 
phenomenon makes sense to us because the flexural rigidity of the plate should decrease as 
the effect of inertial momentum of i-stiffeners, for sure that we plotted the mode shapes 
of the plates in Fig. 8: natural frequencies of Case 4 do not make any significant change 
over the unstiffened folded plates, although total mass increment of 14.78%. 
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Table 4- Comparison of five first natural frequencies of five folds composite folded 
plate for various stiffeners conditions: simply supported at edged AB and CD, 
( - 0 02 m 

Mode 

1 

2 

3 

4 

5 

Mode 

1 

2 

3 

4 

5 

1457-457457-45745°) 

Case 1 

5.52 

25.47 

38.41 

56.53 

78.76 

Case 2 

5.24 

24.63 

37.52 

54.17 

77.57 

Case 3 

8.46 

38.62 

45.41 

85.34 

96.74 

Case 4 

7.11 

32.08 

40 02 

71.15 

84.06 

|45°/-45°/45°/-45°/45°/-45°| 

Case 1 

5.64 

20.01 

42.34 

57.18 

88.83 

Case 2 

5.41 

25.16 

41.22 

54.92 

86.23 

Cases 

8.32 

38.52 

49.01 

85.61 

101.13 

Case 4 

7.03 

31.86 

41.42 

71.83 

87.51 

|0°/90°/0°/90°/0°| 

Case 1 

10.12 

37.63 

47.32 

90.78 

101.36 

Case 2 

9.56 

36.13 

45.04 

86.73 

96.02 

Case 3 

13 87 

46.15 

63.24 

110.71 

132.76 

Case 4 

10.63 

29.15 

50.86 

65.98 

107.34 

(0°/90°/0°/9070°/90°] 

Case 1 

8.07 

31.11 

37.56 

74.12 

80.07 

Case 2 

7.56 

30.11 

35.54 

71.19 

76.53 

Case 3 

12.12 

41.23 

55.03 

97.72 

116.34 

Case 4 

10.15 

30.49 

47.72 

71.68 

102.14 

Table 5. Comparison of five first natural frequencies of five folds composite folded 
plate for various stiffeners conditions: clamped at edged AB and CD, t = 0.02 m 

Mode 

1 

2 

3 

4 

5 

Mode 

1 

2 

3 

4 

5 

(45°/ - 45°/45°/ - 45°/45°] 

Case 1 

16.01 

34.15 

46.02 

67.83 

87.79 

Case 2 

15.38 

33.12 

45.03 

65.51 

85.77 

Case 1 

21.97 

49 15 

52.83 

100.96 

104.14 

Case 2 

19.02 

41.17 

45.62 

84.07 

89.56 

[45°/-45°/45°/-45°/45°/-45°l 

Case 1 

17.06 

35.72 

48.17 

71.19 

91.82 

Case 2 

16.32 

31.18 

46.71 

68.02 

91.73 

Case 1 

22.01 

49.28 

53.79 

101.42 

108.88 

Case 2 

18.69 

42.32 

47.15 

85.36 

93.62 

|0°/90°/0°/90°/0°| 

Case 1 

30.11 

51.03 

64.17 

104.27 

123 76 

Case 2 

28.23 

48.63 

60.78 

99 65 

117.02 

Case 1 

35.11 

59.23 

79.21 

123.33 

152.34 

Case 2 

27 52 

37.14 

64.34 

76.67 

111.54 

[0°/90°/0°/90°/0°/90°] 

Case 1 

23.61 

41.34 

50.79 

84.01 

97.75 

Case 2 

22.21 

40.02 

48.03 

81.73 

92.97 

Casel 

30.03 

51.18 

69.17 

108.37 

132.83 

Case 2 

27.01 

40 26 

60.72 

82.16 

117.51 
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For Cases 1, 2 and 3, the natural frequencies of the plates having off-axis configu­
rations are always lower than the frequencies of plates having in-axis configurations. 

However, for Case 4, the second and fourth frequencies of off-axis plates are higher 
than the others because of the effect of y-stiffener initial momentum (for more clearly see 
the plotted mode shape in Fig. 8). We can also notice that the natural frequencies of the 
plates are significantly altered for y-stiffeners. 

f,= 47.15(Hz) G= 85.36 (Hz) 

Ftg 8. First five mode shapes of simply supported; unstiffened and stiffened of 
the five folds folded composite plate, folding angle a = 120° 
[457 - 457457 - 45745745°] 

For the same thickness and fiber orientation, when the number of ply increases the 
natural frequencies do not always increases (the second frequency of case 1; the second 
and third frequencies of Case 2 and Case 3 for simply supported condition are decrease). 
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It is observed that the effect of geometry of the folded plate on natinal frequencies is 
significant. 

Fig. 8 shows that the stiffeners do not make any change in getting mode shapes 
of presented plates (mode shapes make this study interesting, useful in dynamic analysis 
of the plates, but any generalized recommendation is very difficult without undergoing 
numerical experiments). 

3.3.2. Transient response 

In the analysis of transient response the same folded composite plates are subjected 
to an exploded knife-edge loading condition scheme of q— 1 kN/m, which having t\ =\ 
ms. £2 =2 ms, (3 —50 ms, illustrated in Fig. 9. 

q{t) 

Time (s) 

Fig. 9 Exploded loading condition scheme 

- Effect of stiffeners orientations 
To observe the effects of stiffener orientations on transient displacement response, 

the plates having lamination schemes [457-457457-457457-45°] and [07907079070° 
/90°] (denoted as [457-45°]3 and [0790°]3) are considered. The imposed boundary condi­
tions simply supported and clamped at edges AB. CD. The results presented in the Fig. 
10(a)-(d) have been compared for different cases. 

Fig. 10(a) and Fig. 10(c) show the displacement response of point M (the center 
point of individual top plate) for clamped at edges AB, CD. Fig. 10(b) and Fig. 10(d) 
show the responses for simply supported at edges AB, CD. 
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Fig. 10. Effects of stiffener orientations on transient displacement responses of the 
five folds composite folded plate, knife-edge loading condition, time step At — 
0.5(ms) 

From Fig. 10, it can be observed that the displacement responses of Case 1 and 
Case 2 are closed to each other. The two y - stiffeners can be clearly improve the stiffness 
of the plate (Case 3) because of the deflection is decrease and the frequencies of the wave 
increase. The difference becomes more rapidly for simply supported plates. Furthermore, 
there is a significant increase of vibration frequencies when the plates having clamped at 
edges. 

- Effect of boundary conditions 
In this subsection, the effects of boundary condition on transient response of point 

M have been investigated for imposed boundary conditions: simply supported and clamped 
at edges AB, CD: and clamped at x = 0 (cantilever plate). The plates having lamination 
schemes of [45°/-45°/45°/-45''/45°/-45°] are taken to these analyses. The present results 
have been compared in Fig. ll(a)-(d) for four cases. From the Fig. 11, we found that the 
displacement amplitudes of cantilever plates are significantly lower than the ones of others 
boundary condition cases. 

15 
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(c) (d) 

Fig. 11. Effects of boundary conditions on transient displacement responses of the 
five folds composite folded plate, knife-edge loading condition, time step A( -
0.5(ms) 

- Effect of fiber orientations 
In this subsection, we investigated the displacement responses of the plate for vari­

ous ply orientations of9 = 15°, 30°, 45°, 60°, 75°. The simply supported plate is subjected 
to a knife-edge loading scheme for duration time analysis of T—0.025 (sec). The lamina­
tion schemes [9° j-9°19°/-9°/9°/-9°] and [0790°/0°/90°/0°/90°] (denoted as [0°/90°]3) are 
taken. 

The displacement responses of point M are calculated and plotted in Fig. 12 to show 
the influence of ply orientation for different cases. 

FVom Fig. 12, it is seen that displacement responses of (0°/90°]3 laminate plates and 
the plates having ply oi 9 = 15° are closed. As the ply angle increases, the wave arrives 
at an earlier time and the frequencies of the wave increase. It can be concluded that a 
bigger ply orientation increases the stiffness in the axial direction, and speed of vibration 
extinction more quickly in that direction. The smallest displacement amplitude occurs for 
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Ftg 12. Effects of fiber orientations on transient displacement responses of the 
five folds composite folded plate, knife-edge loading condition, time step At = 
0.5(ms), duration time T = 0.025(sec) 

the laminate with the ply angle of ^ = 15° because of the lowest bending stiffiiess in the 
lateral direction. 

4. CONCLUSION 

In this study, a finite element method using eight-noded isoparametric plate ele­
ments, based on the first order shear deformation theory was investigated for analysis of 
free vibration and transient response of the unstiffened and stiffened folded laminate com­
posite plate by considering various parameters. The transverse shear deformation, rotary 
inertia of plate and stiffeners are considered in the present method to show the advantage 
of the model. 

Generic validation studies dealing with isotropic stiffened, folded plates are under­
taken to ensure the suitability of the present approach towards the unstiffened and stiffened 
folded laminate composite plate analysis. 

Some set of new results are presented to see the effects of fiber orientations, loading 
conditions, boundary conditions, and fiber orientation on: bendmg deflections, natural 
frequencies, dynamic responses and mode shapes of unstiffened; stiffened folded laminate 
composite plates. 

The applicability of the present approach covers a wide range of forced vibration 
problems, with varying material combinations, geometric features, and boundary condi­
tions. 
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APPENDIX 

^_^ 

^®/&/&/'~-\/ 

ElemL'iiI (p,) of ^ ' ' ^ _ _ > ^ ] ^p ^^ 
indLvidua! plate 5,, t , / 

Element (s,) of ^ i ^ - H y 6., 
individual siifiener t ^ 

idcnt nodus 

p-y©/©/ 
1 yV-s'" y?»--\ / 

Element (P|)of 
individual plate 

T h e degrees of freedoms be tween t h e p l a t e a n d stiffener a t t h e intersect ion are 
coincident . 

For example : node (2pi) of e lement p , : node ( I j , ) of e lement Si a n d node (Ipj) of 
element p j a re coincident . I t is s imi la r for nodes (6p,: 85, a n d 8pj) a n d for nodes (3p,: \si 

a n d 4pj). . . . 




