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Abstract. This paper presents a finite element formulation for investigating the free vi-
bration of uniform Timoshenko beams resting on a Winkler-type elastic foundation and
prestressing by axial force. Taking the effect of prestress, foundation support and shear
deformation into account, a stiffness matrix for Timoshenko-type beam element is formu-
lated using the energy method. The element consistent mass matrix is obtained from the
kinetic energy using simple linear shape functions. Employing the formulated element, the
natural frequencies of the beams having various boundary conditions are determined for
different values of the axial force and foundation stiffness. The vibration characteristics of
the beams partially supported on the foundation are also studied and highlighted. Specially,
the effects of shear deformation on the vibration frequencies of prestress beams fully and
partially supported on the elastic foundation are investigated in detail.

1. INTRODUCTION

Practical problems like railroad tracks, hight way pavements, continuously pipelines
... can be modelled by means of beams on elastic foundation. Static analysis of beams on
various types of foundation has been extensively carried out by many researcher [1, 2]. In
the context of dynamic analysis, in [3] Rosa described an analytical approach for inves-
tigating the effect of foundation support on the vibration characteristics of Timoshenko
beams resting on a Pasternak foundation. Using the so-called Rayleigh-Ritz method, Rao
has investigated the large vibration characteristics of simply supported and cantilever
Timoshenko beams resting on a two-parameter foundation [4]. By solving the govern-
ing equation, Hung [5] derived the stiffness and mass matrices used in dynamic stiffness
method in asserting the natural frequencies of shear deformable beams resting on a Win-
kler foundation and under axial force. The method may result in accurate frequencies but
requires complex mathematical forms of the stiffness and mass matrices.

From practical point of view, beam prestressed by axial force is widely use as a struc-
tural element in civil engineering, since its superiority in sustaining mechanical forces in
particular applications. With the presence of axial force, the prestress beam may have dif-
ferent static and dynamic characteristics, comparing to its conventional counterpart. The
effect of axial force may be explained by alternation of the bending stiffness of the struc-
tural element, and for the case of beam, the vibration frequency is remarkably reduced by
the compressive membrane force [6].
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Very recently, the author investigated the vibration frequency of slender beams resting
on a Winkler foundation by using the finite element method [7]. In the work, a Bernoulli-
type beam element has been developed and employed to compute the frequency of the
beams using various types of mass matrices. The main objective of this paper is to extend
the work in [7] to the case of Timoshenko beams, so that the effect of shear deformation on
the dynamic characteristics of beams can be examined in detail. In addition to the shear
deformation effect, the influence of partial support by the foundation on the dynamic
characteristics of the beams which has not been studied in the cited references is also
investigated.

In the context of the finite element analysis, the main difference between the Tim-
oshenko and Bernoulli beams is the ability of adopting different shape functions to in-
terpolate the displacement fields. For the Timoshenko beam, with the introduction of
shear deformation, the rotation becomes an independent variable, and the linear functions
can be adopted, while for the Bernoulli beam, the cubic polynomials are the lowest or-
der shape functions [8]. Thus, the Bernoulli element may be better in representing the
deformed configuration of beam, but in addition to the simplicity of the finite element
formulation, the Timoshenko beam has ability in modelling the shear deformation effect,
which may be important for the case of stubby beams.

Following the above introduction, the remainder of this paper is organized as follows:
Section 2 formulates the stiffness and consistent mass matrices for the prestress Timo-
shenko beam element resting on an elastic foundation. Section 3 describes the equations
of motion for the case of free vibration of a finite element model. The numerical inves-
tigation is presented in Section 4. The main conclusions of the paper are summarized in
Section 5.

2. FINITE ELEMENT FORMULATION

2.1. Element stiffness matrix

Fig. 1. (a) A two-node beam element, (b) Geometric relation for a differential
element of length dx

Consider a two-node (denoted i and j) beam element with length l, flexural rigidity
EI , shear rigidity GA, prestressed by axial force P as shown in Fig. 1a. The beam is
supported on a traditional Winkler elastic foundation, which being modelled by linear
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springs with stiffness kW (unit of force/length2). In this Winkler model, the springs
are assumed to be independent of each other, and only one parameter kW is represented
for the foundation [1, 9]. The element contains four degree of freedom (d.o.f.), two at
each node, namely a transversal displacement and a rotation. Thus, the vector of nodal
displacements is given by

d = {wi θi wj θj}T , (2.1)

where superscript T denotes the transpose of a vector or a matrix. Assuming linear elastic
behavior, the strain energy of the element is obtained as a contribution from strain energy
due to the bending and shear deformation of the beam UB, the energy stemming from
deformation of the foundation UW , and energy of the axial force UP . The strain energy
stored in the beam element is simply given by

UB =
1
2

∫ l

0
EIχ2dx+

1
2

∫ l

0
ψGAγ2dx, (2.2)

where χ = ∂θ/∂x is the beam curvature; γ is the shear strain, and ψ is the correction
factor to allow for cross-sectional warping [10]. The strain energy stemming from the
deformation of foundation has a simple form

UF =
1
2

∫ l

0
kWw

2dx. (2.3)

To derive the energy contributed by the axial force P , we consider herewith a differential
element with initial length of dx as shown in Fig. 1b. Let a small lateral displacement w(x)
takes place, and denote ds is the new length of the differential element dx. For the case of
Bernoulli beam, the rotation is w,x, and the new length is computed as ds = (1 +w2

,x)
1/2.

However, taking the shear deformation into account, the total rotation of the element is
not w,x, but θ, and from Fig. 1b we get

ds = (1 + θ2)1/2dx ≈ (1 +
1
2
θ2) dx. (2.4)

Thus, the axial membrane strain for the case of Timoshenko beam is given by

εm =
ds− dx

dx
≈ 1

2
θ2. (2.5)

During a small lateral displacement w(x), the axial force P is still constant (positive in
tension). As each element dx lengthens an amount εmdx, the force P will produce work
in amount of Pεmdx. Thus the change in membrane energy is

UP =
1
2

∫ l

0

Pθ2dx. (2.6)

To this point, we follow the standard approach of the finite element method by introducing
an interpolation scheme for the lateral displacement w(x) and rotation θ(x) as

w = Niwi +Njwj =
l− x

l
wi +

x

l
wj ,

θ = Niθi +Njθj =
l − x

l
θi +

x

l
θj ,

(2.7)
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where wi, wj , θi and θj are the values of the lateral displacement and rotation at nodes i
and j. The shear strain γ(x) is expressed in terms of the nodal displacements and rotations
through

γ(x) =
∂w

∂x
− θ. (2.8)

Substituting Eqs. (2.7) and (2.8) into Eqs. (2.2)-(2.6), we get

UB =
1
2l
EI (θj − θi)

2 +
1
2
ψGAl

[
wj − wi

l
− 1

2
(θi + θj)

]2

,

UW =
1
6
(w2

i + wiwj + w2
j )lkW ,

UP =
1
6
(θ2i + θiθj + θ2j )lP.

(2.9)

In order to avoid the shear locking problem [11], in Eq. (2.9) we have used one-point
Gauss quadrature to evaluate the shear strain of the beam as

1
2

∫ l

0
ψGAγ2dx =

1
2

∫ l

0
ψGA

[(
wj − wi

l

)
−

(
l − x

l
θi +

x

l
θj

)]2

dx

=
1
4

∫ 1

−1
ψGA

[(
wj − wi

l

)
− 1

2
(1 − ξ)θi −

1
2
(1 + ξ)θj

]2

dξ

=
1
2
ψGAl

[(
wj − wi

l

)
− 1

2
(θi + θj)

]2

. (2.10)

From Eq. (2.9), the element stiffness matrix is obtained as the summation of stiffness
matrices due to bending and shear deformation of the beam, stiffness matrices due to the
foundation deformation, and due to the axial force. These matrices are obtained by twice
differentiating the corresponding expressions of strain energy with respective to the nodal
displacements, and having the form

kB =
EI

l




0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1


 +

ψGA

l




1 1
2 l −1 1

2l
1
2l

1
4 l

2 −1
2 l

1
4 l

2

−1 −1
2 l 1 −1

2 l
1
2l

1
4 l

2 −1
2 l

1
4 l

2




kW =
1
6
lkW




2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0


 ; kP =

1
6
lP




0 0 0 0
0 2 0 1
0 0 0 0
0 1 0 2


 .

(2.11)

The above stiffness matrices kW and kP contain many zero coefficients, which are different
from the full matrices of Bernoulli beam element, previously derived in [7].

2.2. Element consistent mass matrix

A mass matrix is a discrete representation of a continuous distribution of mass. In the
present work, the elastic foundation is considered massless as usually assumed in analysis
of beams on foundation [4, 12]. Thus, the element mass matrix is contributed from the
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mass of the beam only. The kinematic energy of a uniform beam element with inclusion
of shear deformation is given by [13]

T =
1
2

∫ l

0
ρAẇ2dx+

1
2

∫ l

0
ρIθ̇2dx, (2.12)

where ρ is the mass density; A and I are the area and moment of inertia of cross-section,
and ˙(...) = d(...)/dt is the velocity of the quantity in the brackets. On the other hand, the
kinematic energy can be expressed through the vector of nodal displacements as [13]

T =
1
2

ḋTmḋ, (2.13)

where ḋ = dd/dt with d defined by Eq. (2.1), and m is the mass matrix of the element.
Substitute (2.7) into Eq. (2.12), we get

T =
1
6
ρlA(ẇ2

i + ẇiẇj + ẇ2
j ) +

1
6
ρlI(θ̇2i + θ̇iθ̇j + θ̇2j ). (2.14)

We can rewrite Eq. (2.14) in a matrix form as

T =
1
12
ρlḋT




2A 0 A 0
0 2I 0 I
A 0 2A 0
0 I 0 2I


 ḋ. (2.15)

From Eqs. (2.13) and (2.15), we obtain the element mass matrix in the form

m =
1
6
ρl




2A 0 A 0
0 2I 0 I
A 0 2A 0
0 I 0 2I


 , (2.16)

which is a constant positive define mass matrix. The mass matrix derived in this Subsec-
tion using the same shape functions as those of displacement field is called the consistent
mass matrix [13, 14]. It is noted that the consistent mass matrix of the Timoshenko beam
contains some zero coefficients, while that of the Bernoulli beam does not have any zero
coefficient.

3. GOVERNING EQUATIONS

The equation of motion for the discretized undamped structure can be written in the
forms [13, 15]

MD̈ + KD = Fext, (3.1)
where D is the vector of structural nodal displacements; M and K is the structural mass
and stiffness matrices, respectively; Fext is the vector of nodal external forces; D̈ = d2D

dt2

is the acceleration of material particles at the structural nodes. The structural mass and
stiffness matrices are formed by merging the element mass and stiffness matrices in the
standard way of the finite element method

M =
NE⋃

i=1

{m}i ; K =
NE⋃

i=1

{k}i, (3.2)
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where m and k are the element mass and stiffness matrices, formulated in Section 2, and
NE is the total element number of structure.

With no external forces, the structure undergoes harmonic motion (caused, perhaps
by initial condition), and we can write D = D sinωt, with D is the vibration amplitudes
of the nodal displacements D, and ω is the circular frequency (rad/s), so that we can
write Eq. (3.1) in the form

(K− λM)D = 0, (3.3)
where λ = ω2. Eq. (3.3) is called an eigenvalue problem, which gives nontrivial solution
when λ satisfies

det(K− λM) = 0. (3.4)
Eq. (3.3) can be solved using any standard algorithm to obtain eigenvalues λ and their
associated eigenvectors. The frequency corresponding the lowest eigenvalue λ computed
from Eq. (3.3) is called the fundamental frequency [15].

4. NUMERICAL INVESTIGATION

Fig. 2. Beams with with shear deformation for numerical investigation

The eigenvalue problem stated by Eq. (3.3) is formed using the finite element formu-
lations developed in Section 2, then solved for the frequencies of prestress beams shown
in Fig. 2. Various boundary conditions are considered: clamped at one end and free at
other (denoted CF, Fig. 2a), simply supported (SS, Fig. 2b), clamped at one end and
simply supported at other (CS, Fig. 2c). The geometry and material data for the beams
are the same as those in [7], and listed below:

L = 5m; A = 0.01m2, I = 1× 10−5m4,
E = 2.1× 1011N/m2,
ν = 0.3, ρ = 7 860kg/m3

where L, A, I , E, ν and ρ denote the total length, cross-sectional area, second moment
of inertia of cross-section, elastic modulus, Poisson ratio and mass density of the beams,
respectively. For the present study, the beam cross-section is rectangular, so that the
correction factor ψ in Eq. (2.2) is taken by

ψ =
10(1 + ν)
(12 + 11ν)
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For the convenience of discussion, we introduce the following dimensionless parameters

k0 =
L4

EI
kW , (4.1)

which represents the foundation stiffness, and

µ =
L2

EI
P, (4.2)

which represents the axial force amplitude. Following the work in [7], we also introduce
the so-called frequency parameter, defined as

γ =
ρAL2

EI
ω2

1 , (4.3)

where ω1 denotes the fundamental frequency of the beam. Furthermore, in order to study
the effect of shear deformation, we introduce herewith a parameter represented the shear
deformation, defined as [16]

s =
PE

GA
, (4.4)

where PE is the Euler buckling load of unsupported SS beam. Thus, for a higher slender-
ness parameter, the more effect of shear deformation is. In other words, according to Eq.
(4.4), the shear deformation becomes more important for the beam having lower shear
rigidity.

4.1. Fully supported beams

This Subsection presents the numerical results for the prestress beams fully supported
on the elastic foundation. A mesh of 30-equal elements is adopted in the computation.
The reason for using the fine mesh comparing the Bernoulli beams (confirm [7]) is the
lower order of the shape functions adopted in interpolating the displacement field, Eq.
(2.7), so that a fine mesh is needed to ensure the accuracy. [7]. Table 1 lists the frequency

Table 1. Frequency parameter of fully supported beams at various values of k0

and at µ = −2.0

k0 = 0 k0 = 50 k0 = 100 k0 = 150 k0 = 200

SS beam 77.7954 127.7757 177.7560 227.7363 277.7165
CF beam 2.5009 52.4904 102.4799 152.4694 202.4589
CS beam 214.9376 264.9146 314.8915 364.8685 414.8454

parameter of fully supported SS, CF and CS beams at various values of the foundation
stiffness parameter k0 and at µ = −2. The full pictures describes the dependence of
the frequency parameter on the axial load parameter µ and foundation stiffness k0 are
respectively given in Figs. 3-5. It is noted that the effect of the prestress and foundation
support on the frequency of the beams obtained in the present study is very much similar to
that of Bernoulli beams reported in With the above geometric data, according to Eq. (4.4),
s = 0.0012, which is very small, and the shear deformation hardly affects the frequency of
the beams.
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Fig. 3. Influence of axial force and founda-
tion stiffness on frequency parameter of fully
supported SS beam

Fig. 4. Influence of axial force and founda-
tion stiffness on frequency parameter of fully
supported CF beam

Fig. 5. Influence of axial force and founda-
tion stiffness on frequency parameter of fully
supported CS beam

Fig. 6. Effect of shear deformation on fre-
quency parameter of prestress Timoshenko
beams fully supported on elastic foundation

In order to study the effect of shear deformation on the dynamic characteristics of the
beams, the same approach presented in [?, ?] is followed herewith. In this regard, keeping
all the beam data as above, and for s = 0.1, 0.2, ... 1.0, the computation is performed
with different cross-sectional areas A = 1.0264× 10−4, 5.1322× 10−5, ... 1.0264× 10−5.

Fig. 6 shows the effect of shear deformation on frequency parameter of prestress Tim-
oshenko beams fully supported on the elastic foundation, where γ0 and γs denote the fre-
quency parameter corresponding with slenderness parameter of 0.0012 and s, respectively.
With an increase in the slenderness parameter s, a reduction in the frequency parameter
is observed, regardless of the boundary condition. In other words, the frequency of the
prestress beams is reduced by the shear deformation, and we should take this effect into
account for the case of stubby beams. Amongst the three types of boundary conditions
considered in the present work, the reduction in the frequency parameter of CS beam is
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Fig. 7. Frequency parameter of partially sup-
ported SS beams at various values of axial force
parameter and supporting percentages (k0 = 100)

Fig. 8. Frequency parameter of partially sup-
ported CF beams at various values of axial force
parameter and supporting percentages (k0 = 100)

Fig. 9. Frequency parameter of partially sup-
ported CS beams at various values of axial force
parameter and supporting percentages (k0 = 100)

Fig. 10. Frequency parameter of partially sup-
ported SS beams at different supporting percent-
ages and various values of slenderness parameter
(µ = −2, k0 = 100)

the most pronounced. It is noted that, the effect of shear deformation is independent on
the axial load parameter µ and the foundation stiffness parameter k0.

4.2. Partially supported beams

This Subsection investigates the vibration frequency of the Timoshenko beams par-
tially supported on the elastic foundation. The beams are supposed to be supported in
part by the foundation from the left end as typically shown in Fig. 2d for the case of
CF beam. The supported part is denoted αL, with 0 ≤ α ≤ 1 is called the supporting
parameter.

Figs. 7-9 show the frequency parameter of the SS, CF and CS beams as functions of
the axial load parameter µ and foundation stiffness parameter k0, respectively. Similar to
the case of Bernoulli beams, a nonlinear relationship between γ and (µ, k0) is observed,
regardless of the boundary conditions. Amongst the three types of boundary conditions,
the SS and CS beams show a similar behavior in raising the supporting percentage, while
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Fig. 11. Frequency parameter of partially sup-
ported CF beams at different supporting percent-
ages and various values of slenderness parameter
(µ = −2, k0 = 100)

Fig. 12. Frequency parameter of partially sup-
ported CS beams at different supporting percent-
ages and various values of slenderness parameter
(µ = −2, k0 = 100)

the CF beam is more sensitive to the supporting parameter for the supporting percentage
less than 60%.

The effects of shear deformation on the SS, CF and CS beams partially supported
on the foundation are given in Figs. 10-12, respectively. The numerical displayed in the
figures are computed for the axial load parameter µ = −2 and the foundation parameter
k0 = 100. As clearly seen from the figures, the frequency of the beams reduces by the
shear deformation, but the reduction depends on the supporting parameter and the type
of boundary conditions. While the frequency parameter of SS and CS beams clearly
lowers by rasing the shear deformation parameter s, that of CF beam reduces slowly.
The reduction in the frequency parameter of all the beams is more clearly at a higher
supporting percentage. In other words, the foundation increases the effect of the shear
deformation on the vibration frequency of the beams.

5. CONCLUSIONS

The paper has investigated the free vibration of prestress Timoshenko beams resting
on a Winkler elastic foundation by the finite element method. A beam element taking
the effect of the prestress, foundation support and shear deformation into account has
been formulated using the strain energy approach. The consistent mass matrix has been
formulated using linear shape functions. The eigenvalue problem has been solved to obtain
the natural frequencies of beams with various boundary conditions. The dependence
of the frequency parameter on the axial force, foundation stiffness of beams fully and
partially supported on the foundation is investigated. The effect of shear deformation on
the vibration characteristics of the beam has been examined in detail. In addition to the
conclusions which have been made for the Bernoulli beams in [7], the following remarks
can be drawn for the prestress Timoshenko beams of the present work:

- The frequency of prestress beams resting on an elastic foundation is affected by
the shear deformation, and it is lower for a beam having higher shear deformation
parameter.
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- The foundation increases the effect of shear deformation on the vibration frequency
of prestress beams. For higher foundation supporting percentage, the more shear
deformation effect is.

- Amongst three types of the boundary conditions investigated, the CS beam is the
most sensitive to the shear deformation effect.
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13. M. Géradin and R. Rixen, Mechanical vibrations, Theory and Application to Structural Dy-

namics, John Wiley and Sons, Chichester, second edition, 1997.
14. R.D. Cook, Finite Element Modelling for Stress Analysis, John Wiley & Sons, New York, 1995.
15. L. Meirovithch, Fundamentals of Vibrations, McGraw-Hill, Boston, 2001.
16. S.P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, Second

edition, 1961.
17. D. K. Nguyen, Post-buckling behavior of beam on two-parameter elastic foundation, Interna-

tional Journal of Structural Stability and Dynamics 4 (2004) 21 - 43.
18. D. K. Nguyen, Effects of shear deformation on large deection behavior of elastic frames, Viet-

nam Journal of Mechanics 26 (2004) 167-181.

Received August 8, 2005



12 Nguyen Dinh Kien

DAO DÔ. NG TU.
.
DO CU’ A DÀ̂M TIMOSHENKO DU.

.
Ú
.
NG LU.

.
C NÀ̆M TRÊN

NÈ̂N DÀN HÒ̂I
Bài báo tr̀ınh bày công thú.c phà̂n tu.’ hũ.u ha.n dùng trong nghiên cú.u dao dô.ng tu.. do cu’a dà̂m

Timoshenko có thiết diê.n dò̂ng nhất, du.. ú.ng lu..c, nà̆m trên nè̂n dàn hò̂i Winkler. Ma trâ.n dô. cú.ng
phà̂n tu.’ có t́ınh tó.i a’nh hu.o.’ ng cu’a du.. ú.ng lu..c, nè̂n dàn hò̂i và biến da.ng tru.o..t xây du..ng bằng
phu.o.ng pháp năng lu.o..ng. Ma trâ.n khối lu.o..ng nhất quán nhâ.n du.o..c tù. biê’u thú.c dô.ng năng trên
co. so.’ các hàm da.ng tuyến t́ınh. Su.’ du.ng công thú.c phà̂n tu.’ hũ.u ha.n phát triê’n dã xác di.nh tà̂n
số dao dô.ng riêng cu’a dà̂m có các diè̂u kiê.n biên khác nhau, ú.ng vó.i các giá tri. khác nhau cu’a lu..c
do.c tru.c và dô. cú.ng nè̂n. Các dă. c tru.ng dao dô.ng cu’a dà̂m tu..a mô.t phà̂n trên nè̂n dàn hò̂i cũng
du.o..c kha’o sát. Dă.c biê.t, a’nh hu.o.’ ng cu’a biến da.ng tru.o..t tó.i tà̂n số dao dô.ng cu’a dà̂m du.. ú.ng lu..c
nằm hoàn toàn và mô.t phà̂n trên nè̂n dàn hò̂i du.o..c nghiên cú.u chi tiết




