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ABSTRACT

The report aims to show that hedge algebras model actually the proper qualitative
semantics of words of linguistic vartables based on the argument that the inherent qualitative
semantics of words should be expressed through the order relationships between the words in
their respective variable domains induced by the word semantics, as it is required by decision
making of human daily lives. This makes the hedge algebra based approach to the word
semantics quite different to the existing approaches and become the only approach that can
immediately deal with the natural qualitative semantics of words. We explain clearly and
systematically distinguished features and properties of this approach to show that these seem to
make the approach to be sound and to ensure its effectiveness in mitial applications under
consideration. This approach seems to be promising for development of hedge algebra-based
method to solve problems in various application fields. For illustration, we will give a short
overview of effective results of the initial applications of hedge algebras in the fields of
knowledge based systems and of fuzzy control.

Keywords: order based semantics; fuzziness of word; fuzzy set based semantics, fuzzy rule
based system,; classification; fuzzy control.

1. INTRODUCTION

Uncertainty information, including fuzzy linguistic information, appears in almost areas of
human society and of technology and, therefore, any theories of uncertainty can find a wide
range of applications in many distinct fields. The fuzzy set theory is one of such theories, whose
development is motivated by the semantics of words and human capabilities 1n handling such
information, as stated by Zadeh [1]: “Humans have many remarkable capabilities. Among them
there are two that stand out in importance. First, the capability to converse, communicate, reason
and make rational decisions in an environment of imprecision, uncertainty, incompleteness of
information and partiality of truth. And second, the capability to perform a wide variety of
physical and mental tasks without any and any putations.” The fuzzy set
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theory provides a mathematical formalism to deal with the word semantics simulate such human
capabilities in problem solving.

However, to exhibit the specific role of hedge algebras and their prospective applications,
we should start our study with making the semantics of words explicitly and formally defined. In
the fuzzy set theory, words are represented as fuzzy sets, which are a generalization of crisp sets.
Note that the inherent semantics of words has still not been formally defined in the framework of
fuzzy sets, meanwhile one usually interprets the considered fuzzy sets as representing the
semantics of the respective words assigned to them without any explicit basis to justify why
these words but not the other ones can more relevantly be assigned to them. In contrast, the
theory of hedge algebras 15 developed by starting with a formalized definition what is the own
semantics of words and their fuzziness, an essential characteristic of any fuzzy data. In this
overview, we argue more explicitly that “Normally, the meaning of a word or a phrase is a
collection of objects or phenomena present in the real world that the terms or phrases point at”
and, naturally, “The presence of these terms (vague words) in natural language aims to compare
properties of distinct items in terms of words. This semantics seems to be very crucial for human
decision making as it will be discussed next. ...” [2]. That is, we will argue that the semantics of
(vague) words must point at order relationships between the words of a linguistic variable
(attribute). This seems to be very natural and essential and it makes the algebraic approach
essentially different from the fuzzy set based approach, which sometime we call “the analytic
approach”, in modeling the word semantics and in simulating human capabilities mentioned
above. We will demonstrate m an obvious manner that the theory of hedge algebras forms a
sound mathematical and logical foundation to ipulate i diately words in probl
solving. It is natural to expect that the sounder basis of an approach, the more advantageous and
effective 1t may offer. At the same time, we will exhibit initial applications of distinct fields, e.g.
classification, decision making and fuzzy control using fuzzy rule bases systems (FRBSs), which
contribute to show the soundness and the effectiveness of the algebraic approach.

The rest paper is organized as follows. In Section 2 we present why hedge algebras form a
sound approach to the semantics of words. Section 3 devoted to explain why this approach can
bring out the effectiveness in the applications under consideration and to expose shortly their
results. Section 4 offers for main conclusions.

2. HEDGE ALGEBRAS - A SOUND MATHEMATICAL STRUCTURE FOR
MODELING AND HANDLING THE PROPER WORD SEMANTICS

2.1. What is the semantics of vague words?
To show hedge algebras (HAs) to be a sound mathematical structure to deal with to the

semantics of words, we start with di ion about the ics of words since it is crucial and
elementary concept motivating the introduction of fuzzy sets and, then, HAs.

Semantics of formal expressions (syntax) is an important abstract concept of formal logics.
Words in a natural language viewed as as symbolic strings conveying their meaning, which point
at definite things, facts or phenomena in reality, are used to communicate between people in a
community or to do reasoning. For example, the meaning of the symbolic string “river” in
English is a collections of items in the real world that the community in this reality together
point out that they are “river”. Similarly, we can explain the meaning of “tree”, “green”, “rose
flower”, and so on. Although the semantics of such words 1s sophisticated, it may still be very
easy for us to explain what the meaning of such words is, as they point at concrete items in the
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reality. It seems to be much more difficult to define the semantics of vague terms such as “true”,
“young”, “beautiful”, ... , since they do not still indicate concrete items 1 the real world. So,
what things in the reality they point at?

To define the semantics of this kind of words, first, the authors of the study do not think
that they point at “fuzzy sets”, because no any individuals of a human community think of a
collection of items in reality that the fuzzy sets describe when reading or saying these words. To
argue what is the meaning of, for example, the symbolic expression “young” in English, we try
to imagine what the word “young” points at. Assume that “young” is a words of the attribute
AGE (a linguistic variable). Even then we can observe that it still does not point at concrete
items of the real world, because he does not know “young” points at people, animals or other
things, To discuss about this it is useful for us to imagine in which way a language has been
taken shape along with the existence and development of a human community. We can see that
language serves for cognition of reality and, especially, for the decision making of human
beings. We recognize that life of a human being, and even of an animal, comprises a consecutive
series of decisions. The nature of a decision is to choose a more preferable alternative among
several ones. That is comparability between properties of items is essential and crucial for
decision making. As a i\ in natural lang as vehicles convey ics for
communicating and doing reasoning of human beings, should have elements (words, phrases,
linguistic hedges, ...) to describe preferable alternatives based on comparison between their
properties with respect to certain decision criteria. Thus, it implies that words in a context of a
linguistic variable (attribute) used to describe properties of items in the real world are
comparable, i.e. the semantics of words of a variable, generate an order relation on the word-
domain of the variable. So, we can recognize that words in this context point at their order
relationships with the other ones in the same context, noting that two words may even be
incomparable.

This viewpoint of the word semantics seems to be very essential and fundamental. Once
term-domains have their own structure, modelling the word semantics, one should start with this
structure to develop a formalism. After all, the existence and development of a human being or a
human community, or even of an animal, in a real world is just a real and objective environment
in which language accompanying with a community has taken form and, as a consequence,
involves elements used to describe preferable features of alternatives in the reality serving for
decision making.

2.2. Hedge algebras — A sound mathematical semantic structure of term-domains of
variables

Restricting ourselves to the context of a linguistic variable, based on this viewpoint of the
word semantics, every word-domain can be viewed as an order-based structure in which the
meaning of a word is described by a collection of its order relationships with the other words of
the word-domain. Thus, any matt ical theory developed to model the semantics of words of
a variable should be able to deal with this semantics, e.g. should preserve the order-based
structure of the word-domain. It can easily be seen that the fuzzy set theory does not preserve
these order-based structures.

Hedge algebras were introduced and developed to model and represent this semantics of
words by considering word-domains of linguistic variables as algebras and by trying to discover
the semantic properties of words in terms of the “inherent” semantic order relation of the word-
domains [3 — 6, 7, 8]. Because term-domains in natural languages have their own inherent order-
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based structure, we may expect that many interesting semantic properties of words can be
discovered and, it can be observed that, they cannot be formulated in the framework of the fuzzy
set theory.

Formally, every word-domain of a variable X; Dom{X), can be considered as an abstract
algebra, AX= (X, G, C, Hj, <), where X is a word-set of X, < is an order relation on X; G is a set
of two generators, one is called the negative primary term ¢~ and the other the positive primary
term ¢* satisfying ¢ < ¢", for instance, small < big; C = {0, W, 1} is the set of constants, in
which 0 and 1 are, respectively, the least and the greatest term in (X, <) and # is the neutral
term, e.g. “medium”, “middle-age”, ..., satisfying 0 < ¢ <W<c' < I, Hy= HU {I}, where H is
a set of hedges of X; regarded as unary operations, and ] is the identity of X. So, every term x in
X can be represented as a string expression, i.e. either x=c orx=h,, ... lyc, forsomece GuU C
and b, € H,j=1, .., m, and it is called (string) representation of x, which is quite similar to
words expressions in natural (English) languages, e.g. “very rather true”.

In this formalized structure, many natural properties can be formulated and discovered 3],
for instance, the following:

First, it is compatible with the comparability demand for human decision making, the
action effect of every hedge 4, e.g. & is “very”, “little”, or “extremely” ..., when acting on a word
x, causes order relationships between the resulting word /x and the operand word x, i.e. we have
either x < hix, or x > hx. If ix = x, then x is a fixed point and, then, finite hedge algebras can be
assumed.

It is interesting that in terms of <, we can define the following concepts, but not the only
ones, and they cannot be discovered in the fuzzy set theory framework (refer to [2, 3, 5, 9]):

-Algebraic sign of the primary words ¢” and ¢”, ¢” < ¢', representing their inverse semantic
tendencies: sign(c’) = -1 and sign(c’) = +1. For example, fast and slow have inverse
tendencies and sign(slow) = —1 and sign(fast) = +1.

-Algebraic sign of the hedges: firstly, as discussed above, every hedge either increases or
decreases the order based semantics of an atomic (primary) word and, hence, it has an
“algebraic” sign. So, the set H of hedges of interest is partitioned into the set of positive
hedges, H' = {h € H: hc' > c*}, and the set of negative hedges, H" = {h € H: hc* <c*}.
Secondly, every hedge has its semantic effects with respect to any other ones. For
instance, sign(L, V) = —1, where L and ¥ stand for Liztle and Very, respectively, as L
decreases the effect of V, e.g. rue <L _V_true <V true, whereas sign(V, L)y =+1.

-Hedge inheritance, which describes the own function of the hedges that they only modify
or intensify the semantics of a given word, while inheriting a specific key semantics of
the word they act on. In terms of <, it can be formulated as follows (next, R stands for
Rather):

() h#k& hx<kc h'hx <Ik’kx, forall k, k € H. For instance, L_true < R_true
hL_true <kR_true; and
(i)ve Hw)andv<u(v2u) v<hu (v2 hu), for every h e H,.

-Word independency: If u, v are independent, i.e. u & Hi(v) and v & Hu), then x € Hfu)

x e H(v).
T!xe above properties that originate only from the natural semantics of words are basis to
establish an axiom system for word-domain structures, including in particular /inear ones, and,
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then, we obtain algebraic structures, called Hedge Algebras (HAs). Note that, we restrict
ourselves to the linear structures of word-domains in this study. So, hedge algebras provide a
strict mathematical formalism to handle 1mmediately words as linguistic values of variables and
it is interesting that it is sufficient to develop hedge algebras to become a rich enough theory to
deal with linguistic fuzzy information for problem solving in an uncertainty environment.

2.3. Quantification of hedge algebras and the quantitative semantics of words

Fuzzy sets assigned by human user to words can be interpreted as being quantitative
semantics of words and one argues that they represent the fuzziness of words. Then, the
fuzziness of words was defined pointwise based on the membership values of their fuzzy sets:
every value taken in [0,1] represents an uncertainty degree of the membership of an element of
the variable universe of discuss that attains the unit 1 for the element membership degree value
equal to Y3, the value 0 for the element memhershxp degree values equal to 0 or 1 and a value in
between 0 and 1 for the I bership degree values. Then, the fuzziness
measure of a word is measured by the sum of the uncertamty degrees of the membership values
of its assigned fuzzy set. That is, instead dealing with the fuzziness with words, one had to deal
with the fuzziness of thewr assigned fuzzy sets.

It can be seen that there is no formal linkage of the word semantics with the fuzzy sets
assigned by the user to the words of interest, whereas the fuzziness of words is defined by their
fuzzy sets, i.e. it depends on the fuzzy set assignment by the user, but not on the words
themselves. Therefore, there is an obvious gap between the actual semantics of words and their
fuzzy set based semantics assigned to them by the user. This may causes some problems, e.g. the
definition of the fuzziness of words based on the membership values of their fuzzy sets might
not be represent the proper fuzziness of words. Similarly, once the fuzzy set based semantics of
words cannot be formally defined based on their own inherent qualitative semantics, there is no
basis to ensure that the fuzzy sets can properly represent the word semantics, while the fuzzy set
theory aims to simulate the remarkable capabilities of human beings in processing and reasoning
with linguistic information.

Up to now, HAs can be regarded as the only theory that manipulates directly on words and
their qualitative semantics and they form an algebraic approach to the word semantics, versus
the fuzzy set theory which is regarded as an analytic approach developed utilizing the structure
of the analytic function space. In HA approach, the order based qualitative semantics of words
determines formally and algorithmically their g ics. This is very important,
because it forms a formal basis to develop methodologles to deal simultaneously with the
qualitative semantics of words and their quantitative one, including the fuzzy set based
semantics of words, and this can be done only when word-domains are formalized. This is
reasonable and compatible with the nature of the word semantics: words of natural languages
convey their meaning that are mapped to their respective items in the reality, but not conversely.

This formal basis comprises the following quantification characteristics:
2.3.1. Fuzziness model, fuzziness measure and fuzziness intervals of words

In the algebraic approach, fuzziness of words plays a centric role in defining not only the
distinct characteristics of words presented in this section, but also the fuzzy set based semantics
of words. This seems to be compatible with the fuzziness nature of the fuzzy linguistic
information and this contributes to make this approach quite different from the analytic one.
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Consider a linear HA 4x = (X, G, C, Hj, <) of a linguistic variable X. To define the
fuzziness of a word, we iry to explain why the word “green” is fuzzy. One may envision that
words become inexact or fuzzy because every natural language comprises only a finite number
of words, while they are used to describe infinite items of the real world. In practice, “green”
points at maybe infinite instances of colours that a human community call “green”, as they still
contain a specific key feature of “green”. Following this observation, we now consider a vague
word x of X. By the hedge inheritance, H{x) consists of all terms that still inherit a specific
genetic key semantics of x. Similarly as the fuzziness of “green”, H/(x) can be interpreted as to
be the fuzziness model of x ([7,8]. The set {H{x): x € X} forms a specific structure that can be
viewed as a neighbourhood basis of a topology in a general sense and as a basis to define the
concept of fuzziness measure.

To introduce an axiom system of fuzziness measure fm of X, we assume A4X to be free, i.c.
hx #x, for Vx € X and Vh € H, and let us consider an order-isomorphism f: X — [0,1], i.e. it is
an one-to-one mapping and preserves the order relationships of X. In addition, it is necessary to
assume that the image f{X) of X is dense m [0,1]. Our idea is that the fuzziness measure fin is
defined for every x as to be fin(x) = |closure(fiH{x)))|, the diameter of closure(f{H/(x))). This and
the structure of {H{(x): x € X} suggest us to introduce the following axioms of fm:

(fimd) fin(c) + fin(c") = Land Y fin(hu)= fin(u), for Vue X.

(fm2)Vx,ye X,Vhe H, Sy _ fmlhy) = H(h), called the fuzziness measure of & (hedge).

Sm(xy  fin(y)

(fm3) Putting o = Z{sh): he H} and B =Z{(h): he H'}, wehave @ + f=1.

The set closure(f{Hy(x))) defines an interval 3(x) < [0,1], whose values can be considered
as compatible with the semantics of x and, hence, it is called the fuzziness interval of x.
Evidently, we have [3(x)| = fin(x) and, since fis isomorphic, we have hx <kx & hx # ke~ S(h)
<3(kx),x € X.

So, the concepts examined in this section seem to be very natural and they have close
relationships with each other. In addition, it can be seen from (fml) and (fm2) that fim and the
fuzziness intervals are completely determined by giving the values of fin(c’) and k), h € H,

called the fuzziness parameters of X. They are the parameters for tuning to find optimized vague
words.

2.3.2. S ically quantifying

ppings of AX (6]

We have presented above that a given isomorphism f produces a fizziness measure fm and
the fuzzmess intervals of words, 3(x), x € X. In turn, a given fin can induce an isomorphism,
denoted by s, called Semantically Quantifying Mapping (SQM). The values of an SQM are
called numeric semantics of the respective words. Y 18 defined recursively as follows:

(SQM1) 9:l(W) = 8 =fin(c), Yn(c) = O — afin(c)) = fin(c), tu(c") = O+afin(c”).
SOMD) v, (1,3) =0, () + Sgnh WS, )] b2 fntih, )}
where 1 59 %[H Sgnih x)Sgn(h,h x)(B-e)e {a, gy T allj € [4"p]= §: q<j<p&j#0}.

Thus, SQMs can again be determined when providing the fuzziness parameter values of X.
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2.4. Semantics core of words and enlarged hedge algebras [10]

In fuzzy logic technology one usually also apply trapezoidal fuzzy set based semantics of
words, whose cores are intervals, whereas the cores of triangular fuzzy sets are single value sets.
This suggests us to think of the fact that the semantics of words, viewed as fuzzy information
granules, may have their kernels. In the fuzzy set framework, the fuzzy set based semantics,
including the trapezoidal fuzzy sets, are assigned intuitively by the human user to words. Of
course, the word kernel still cannot be formalized in it. Whereas in the algebraic approach we
will show that this concept can axiomatically be formalized in a reasonable way, which leads to
the concept of enlarged hedge algebras (EnHAs). To model the kernel of any word x € X, we
need an additional artificial hedge, denoted by /o, whose function is to generate the kernel of x.
So, hox is the kernel of x and considered as rep ing the ic core of words. The way to
develop EnHAs is sinular as the way for the ordinary HAs. The idea to develop the concept of
EnHAs is as follows: Any given linear HA 4X= (X, G, C, Hy, <) can be enlarged to become an
EnHA AX, = (X, G, C, H,,, <) by an addition of 4, to H; and by introduction of the following
axiom (AS) for simulating properties of the semantics core of words, kgx, x € X (note that
Axioms (A1)~ (A4) can be found in [3]):

(A1) The unit operation ¥ (i.e. the greatest element) in H" either is positive or is negative
w.r.t. any operations in H. Particularly, ¥ is positive w.r.t. itself and the maximal operation L in
H.

(A2) Ifu, v e X are independent, i.e.u ¢ H(v)andv ¢ H(u), thenx € H(u) = x ¢ HK).

(A3) Hedge inheritance®: For Vx € X, Vh, k, h’,k’ € H, we have
() x#hx = x ¢ Hhx).
(i) =k & hx < Jox = h'hx < k'lox.

(iii) If /x # kx, then Ax and kx are independent.
(A4)For Vu e X,if v & Hiu) and v<u (v2u), then v< hu (v 2 hu), forevery h € H,.
(AS5) Axioms for the semantics core of words [10]: For Vx,y € X.,and x #y,

(1) 2’hox = hox, for Vi’ € H.,, i.e. hox is always a fixed point, and, for x € X, hox = x if and
only if x is constant, otherwise, Aox and x are incomparable.

() Vx,ye K,x<y=>hx<y&x<hy.

It is interesting that the statements (i) and (i1} are sufficient to describe the semantics cores
of the words in X: the kernels of the constants are just themselves; the kernel of a word must be
included in it, but inclusion cannot be described in the order-based structures and, therefore, they
should be incomparable. Nevertheless, it can be proved in the theory of EnHAs that the fuzziness
intervals of the kernels of words should be included in the fuzziness intervals of their respective
words.

The following properties of X, describe the semantics core of the words and the order-
based structure of X,,. First, we introduce some notations: for the underlying set X of 42X we put
X,= {xe X:|x| =k} and Xy = {x € X: [x| <k}, while for X, we have Xpx =X, {hou : u € X
b} and Xonn = {x € Xen: WSk} =Xy {hout 1 u € Xpp}-

2 Suntably, this terminology is used mstead of in our previous ones, hedge beredity, ¢.g. n Nguyen and Wechier, 1990
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Theorem 2.1. Let AX™ = (Xn, G, C, Hen, <) be an EnHA of a free linear HA AxX= (X, G, C, #,
<). Then,

(i) Xen =X {hox :x € X\ C} and, forx & C, hox g X.

(ii) For Vx, y € X,,, we have x <y & x < hgy & hox <y &> hox < hyy. Consequently, {igx: x

€ X} is linearly ordered.
(iif) The set Xuns = Xa U {hou 1 4 € Xty} & KXoy is also linearly ordered.

Since the concept of the fuzziness measure of words and its axiomatization are almost the
same as in the case of ordinary HAs, except the need of introduction of the fuzziness measure of
the constants, fin(6), fm(W) and fin(I), which are possibly different from zero, and of the specific
hedge hq, £2(hy), its axiomatization that can be referred to [10] is ignored here.

Then, given fin, the fuzziness intervals will be defined as follows:

Definition 2.1. Given a fuzziness measure of an EnHA A4X., of a linguistic variable X and let us
assume that each word x € X,, of a linguistic variable X is associated with an interval 3(x) ¢
[0,11, the normalization of the reference domain of X. These intervals are said to form 2 system
of fuzziness intervals of the words of 4.X;,, provided the following conditions hold:

(fil) |3(x)| = fin(x), for all x € X.,, where [3(x)| denotes the length of the interval 3(x).

(fi2) The set {3(hx) : k € H,,} forms a (binary) partition of 3(x) and the order of its
intervals is in accordance with the order of their associated words, i.e. (Vx,y e {hx:he
Ha})(x<y  3()<30).

To point out the correctness of this definition and the structure of the fuzziness interval

family we have the following.

Theorem 2.2. Definition 4.2 is comect, i.c for a given fuzziness measure fm, there exist
uniquely a system of intervals of the words of 4x;, satisfying the conditions (fil) and (fi2) in the
sense that the fuzziness intervals of every word in any two such systems differ from each other
only at their end points. In addition, putting I, = {S(¥) : y € Xoni} = {3(x) 1 x € X3} U {S(hp2) :
% € Xy}, the structure of the fuzziness intervals of X have the following properties:

(fi3) For y € H.,(x) and hence y # x, we have 3(y) < 3(x). Especially, S(hox) € 3(x), Vx e
X

(fi4) For every integer k > 0, the intervals 3(x), x € X4, form a binary partition of [0,1]
and their order is in accordance with the order of their associated words. That is we have:

Vr,ye Xaix<y Sx)<30).
(fi5) For every £, I is topologically finer than I.,, i.e. every fuzziness interval in I, should
be mcluded in a certain fuzziness interval in ;.
(fi6) Tfle set {S(hpx) 1 xe X} is linearly ordered and its order is in accordance with the
order of their words. Moreover, 1t is dense in [0,1] in terms of the ordinary topology.

The concept.of SQMs is now replaced with the concept of interval-valued SQMs, whose
values are taken in PI([0,1). For short, for every word-set ¥ € X,,, we denote by kY the set {Aopx
ixe Y},
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Definition 2.2. Let 4x, = (X.s, G, C, H,,, <) be an EnHA of a given ordinary hedge algebra 4x.
An interval-valued mapping f: X, — PI([0,1]), whose interval-values are right-closed and left-
open, except when their left end-point is 1, is said to be an interval-valued quantifying mapping
(IVQM), provided the following conditions hold:

(IVQM1) fpreserves the order of the words in X; i.e. it is a homomorphism of (X, <) in the

category of the ordered sets. That is, (Vx, y € X.,)(x <y = fx) <f))
(AVQM?2) fpreserves the functionality of the hedge #q, i.e. (Vx € Xen)(flAox) € fx))
(IVQM3) C(flheX)) = [0,1], where V) = {fix) : x € ¥}, Y X,.n.

Axiom (IVQM3) ensures that the numeric interval semantics of the words of X should
approximate any numeric values in [0,1]. So, we see that the concept of the IVQMs is defined in
a very natural way and their axioms are minimal constraints and, hence, it seems to be most
general. Although such IVQMs are defined by general conditions related directly to the IVQM
concept, it is expected that they should even then be in a strict relation with the fuzziness

the fi and the fuzzi intervals of words. If the answer is
afﬁrmatlve it contributes to demonstrate the soundness of the algebraic approach to the
semantics of words.

Theorem 2.3. Let f'be an IVQM of the EnHA 4X;, of a free LHA 4X. Then, for every x € X.,,
() CURAHA(x))) = CRHAX))) = C(fiHenAx))) € PI([0,1]). Especially, forx & (X, \X) U C,
we have C(RH/(x)) = C(f(x)).
(i) fx) = flhox).
(iii) f induces a function fmy : X,, — [0,1), defined by fm(x) = |C(AHAx)))|, especially, fm/x)
={C(Ax)|, forx € CU {hex : x € X}, whichsatisfies the first two axioms of the fuzziness
measure of 4, and, therefore, it is called a semi-fuzziness measure of AXep.

In the paper [10], we have shown that the EnHAs offer a formal basis in which the word
semantics produces the trapezoidal fuzzy set based semantics of words and can be applied to
solve classification problems even more effectively than the method examined in [2] using
triangles.

To end this section, it is worth emphasizing that although both fuzzy sets and hedge
algebras all deal with words as uncertainty linguistic mformatlon only hedge algebras can
handle immediately words and deal with their qualitative Especially, hedge algebras
can establish a strict mathematical foundation based on an axiomatization manner for this. It is
important that there are many basic and fundamental facts which support for this assertion, as
discussed above.

Since the more fundamental a theory, the more soundness and effective applications of the
theory can be achieved, we may hope that the HA theory can solve problems of different areas
more effectively than the fuzzy set based counterpart methods.

3. THE HA APPROACH TO COMPUTING WITH WORDS

The terminology of Computing With Words (CWW) was used first in 1996 by Zadeh in his
study [11] this concept has been taken form in that paper. Since then CWW has attracted many
attention of the fuzzy community and has been intensively investigated, especially, it can find
various interesting applications [1] Nevertheless, as it is discussed above and pointed out in [9]
that, since the fuzzy set theory does not originate immediately from the order-based semantics of
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words, there is a “formalized gap” between the words and their fuzzy set based semantics. This
may cause some significant shortcomings in distinct approaches to CWW, as discussed next.

An important area of application of CWW is the decision making in a linguistic data
context, for which linguistic scales and mathematical representation of words should be
examined. To limit these shortcomings of CWW in this area, the authors of {9] have argued that
computing with words in a linguistic scale must be realized on word quantitative semantics and
the words of the scale are used for human users expressing their assessments in decision making,
They have also formulated explicitly two characteristics of linguistic scales for decision making:

“Property 1: Linguistic scales should have a semantic representation model with an explicit
declaration of qualitative and quantitative semantics of the linguistic words of the scales. The
qualitative semantics of terms is devoted to experts to express their linguistic assessments, while
the quantitative semantics of terms is exploited to develop the computationally operational
mechanism of the scales.

Property 2: Linguistic scales should be associated with their respective semantic linguistic
scales constructed based on the proposed semantic representation model, which is equipped with
an adequate computational structure so that it is closed with respect to necessary operations,
mncluding aggregation operators,”

Then, in order to avoid the above mentioned shortcomings of existing approaches, they
propose three requirements for dealing with linguistic scales and constructing a mathematical
mechanism, called in that paper semantic linguistic scales, for computing with words of the
linguistic scales:

“Requirement 1: Linguistic rept models of linguistic scales should be developed
based on a clearly declared qualitative and quantitative semantics of linguistic words, which are
related with their inherent order-based ics as much as possible

Requirement 2: There should be a suitable formalized hanism based on the declared
qualitative and g itative ics of words to construct a semantic linguistic scale
characterized by Property 1 and Property 2 with obvious computational characteristics useful
for practical applications.

Requi 3: The ic linguistic scale should bring necessary advantages to develop
computational operations for developing decisi king hods, including aggregation
operators, in particular. The constructed semantic linguistic scales should be closed with
respect to the developed aggregation operators.”

Based on these, it can be drawn that linguistic scales developed in the existing approaches
are very difficult to satisfy well these requirements, since in Section 2.1 we argue that the
qualitative semantics of words in natural languages should be defined based on order-based
semantics of the domains of linguistic variables. For mstance, since assigning words of a
linguistic variable to fuzzy sets by a meaning mapping M, in general, M does not preserve the
order-based semantics of words, noting that ranking fuzzy sets is a difficult problems. Therefore,
the approaches relying upon the extension principle of fuzzy sets [12] have no formal basis to
link with the order based semantics of words. To establish such a formal basis, linguistic
domains should be mathematically formalized.

For the symbolic approaches, e.g. [12 — 14], one tries to manipulate immediately the words
of given linguistic scales utilizing their order in their scales. However, the quantitative semantics
of words is not explicitly declared. So, the question is that on which quantitative semantics the
developed operations on such scales act on? Analyzing how the proposed operations on the
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scales of symbolic approaches were defined we recognize that the indexes of the words in the
scale of interest are utilized to define the computing mechanism of the scale. As it is discussed
above, operations of the scales should work on the words semantics and, hence, the question is
that may we declare explicitly that the quantitative semantics of the words in the given scales are
their position indexes in the scales? It seems that it is impossible.

The HA approach provides a formal basis to develop computing mechanism for linguistic
scales by discovering the formal structure of the linguistic scales and developing the respective
semantic linguistic scales associated with them, This formal basis has the following interesting
main features:

1) The semantics of a word present in a given linguistic scale is determined mainly in the
context of the whole of its linguistic variable, i.e. it is defined in the free (infinite} HA
AXassociated with the variable. However, a scale is finite and the semantics of its words
is changed a bit by the influence of their neighboring words in the scale. For example,
the semantics of the word “good” of the variable QUALITY of a technology project
appearing in between its neighboring words “medium” and “extremely good” of a scale
is changed when it appears in between “rather good” and “very good” in another scale.
That is, the specificity (vs. the generality) of a word can be changed, but certain specific
key semantics of the word are still maintained, when its netghboring words are c}

The structure of the linguistic scales determines or produces their respective semantic
linguistic scales based on the structure of the variable hedge algebra. In other words, the
qualitative semantics of the words of a given linguistic scale determines its computing
structure of its semantic linguistic scale. This ensures, based on a formalized basis, that
when someone deals with the semantic linguistic scale, its computing structure ensures
that he still manipulates directly with its words to a certain extent.

2

-~

Now, we describe how a given linguistic scale can determine its 4-tuple semantic lingustic
scale based on the formal basis proposed m [9].

Let be given a linearly ordered linguistic scale T= {x, : j =1, ..., n}. T is said to superior-
closed provided that if T contains a child sx, for some hedge %, then T must also contain the
word x (words: strings of hedges and an atomic word). Denote by x; and x; respectively the left
adjacent and the right adjacent of the word x in the T-context (i.e. in the scale T). Remember that
Xy denotes the set of all words of length < p, where p > 0 is an integer. Then, the following can
be proved:

Proposition 3.1. Let T be a superior-closed word-scale of 42X with a specificity / (the maximal
length of the words in 7). Then, for every x € T\ C, x; is also the left adjacent word of x in the

X,,,-context, where p; = max(|x;), |x]) < / and x; is also the right adjacent word of x in the X"

context, where pg = max{|xg|, [x]) < ). Particularly, 1f x is of specificity /, i.e. [x| =/, then x,
(respectively xz) is also the left (respectively the right) adjacent term of x in X;.

This proposition asserts that we can determine the left (right) specificity degree indicated
by pz (px) of the given word x by calculating the index of Xy (X(m)‘ It is the basis to calculate

the interval-semantics of x using the similarity intervals of the terms in X (X,,,), noting that,

e
for a given k, these intervals of the degree & are only defined for the set X

Definition 3.1. Let be given the fuzziness parameter values of 42X and v 1s the SQM defined by
these fuzziness parameters. Then, for every x € T, the interval-semantics of x in the context of T

11
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is defined to be the interval I(x) = I;(x) U Ix(x), where I;(x) = lép . x= [lpt%l(x), u(x)) with p, = é
max (x|, [x) and Ix(x) = RS, (x) = [ux), rpt&h(x)) with pg = max(xgl, jx) with §,( denoting the
similarity interval of x with degree p, i.e. 5,(3) is defined for every x € Xy

Then, the 4-tuple semantic linguistic scale of the given linguistic scale T is calculated by the
following proposition:

Proposition 3.2. Let S be a superior-closed linguistic scale with a specificity level / of a given
hedge algebra 42X = (X, G, C, H, <). Then, for given fuzziness parameter values of X, the set §,
= {(s, Ls(5), Us), 75) 15 € S, 7y € Ino(s)} satisfies the following primary properties:
(i) 8, is 4-tuple semantic linguistic scale associated with S.
(ii) Every interval Jx(s) is defined and calculated based on the semantics of the terms of
AX: Ingfs) = I(s) L I(s) and

Iag(s) ==U{Ix) : x € Xia & (x) S [y, 0)s KSgpn D}

To capture more details of this formal basis of the construction of semantic linguistic
scales, the reader can refer to [9]. However, with the above presentation we can see that the
construction examined in that paper is based on a very strict mathematical and logical (semantic)
basis and, therefore, it is called sound construction of semantic linguistic scales.

To show the benefits of the HA approach to such a problem of CWW, a simple decision
making problem is examined in [9]. Let us consider a decision making problem with two
alternatives 4, and A4, and three criteria C;, k = 1, 2, 3. For simplicity, we assume that only one
expert use the same linguistic scale for all three criteria to express the assessments of her/his
evaluation of all the alternatives under consideration with respect to these distinct criteria. In
addition, to make a clearly visible difference of the proposed approach from the 2-tuple based
approach, two linguistic scales, the one 18 a proper subset of the other, that will be applied in turn
are given as follows:

1) The scale

Si=A{sy,:i=1,...,9} = {E_bad,V_bad, bad, R_bad, medium, R_good, good, V_good,
Excellent}.
2) The scale examined in Example 4.1 with
Sy ={s2,:i=1, ..., 5} = {bad, R_bad, medium, good, Excellent} = $)\ {E_bad, V_bad,
R _good, V_good},
where, E_bad 0, Excellent 2 1.

With the given independent fuzziness parameter values x(¥) = 0.484 and fim(c") = 0.5687,
the 4-tuple semantic linguistic scales associated with §, and §, are calculated and given as
follows:

S consists of the following 4-tuples:

(E_b., [0, 0.65), 031, ry), Vri € L(0); (V_b., [0.65, 2.07), 1.33, r2), Vr, € B(V_b.); (b,
[2.07,3.49), 2.75, ry), Vrs € Li(b.); (R_b., [3.49, 0.5), 4.27, ry), Vry € L(R_b.); (W, [0.5, 6.21),
569, rs), Vrs € L(W); (R g, [6:21, 7.36), 6.77, rg), Vre € L(R 2 (g, [7.36, 8.43), 791, r2),
Y{;)E Lig) (V. g, [8.43,9.51),8.99, ry), Vrs € L(V_g.); (Excellent, [9.51, 1.0), 10.0, rs), Vry €
AD).
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S consists of the following 4-tuples:

(b., [0, 3.49), 2.75, r1), Vi € L(B.); (R_b., [3.49, 0.5), 4.27, 1)), Vr, € L(R_b.); (W, [5.0,
6.77), 5.69, r3), Yrs € Li(W); (Good, [6.77, 8.99), 7.91, r), Vrs € L(G.); (Excellent, [8.99, 10.0],
10.0, r9), Vry € I)(Excellent).

Assume that the linguistic assessments of the two alternatives in question of the expert as
shown in Table 3.1 can be considered as his assessments in the context of each of the two scales
S) and S,. Note that the weights of the criteria are also given in the table assuming that the
selected aggregation operation is the weighted average.

Table 3.1. The evaluation provided by the expert with respect to the given criteria and their weights.

Criteria and weights| _ - . -
Alternatives Ciwy =025 G, w;=0,51 s, w3 =0,24
A, sy = Excellent 55 = medium 57=good
4, sa=R_bad 89 = Excellent s4=R _bad

As discussed in the first feature, their semantics of the expert’s linguistic assessments given
in Table 3.1 may be changed a bit by the influence of possible changes in their left and right
adjacent words in each scale. However, as these assessments are in S; = ), we have an intuitive
basis to believe that, under this situation (the same word-assessments and S is extended to Sy),
the expert decision cannot be changed when S; is extended to Si. As we expect, it has been
shown in [9] that while his decision based on the 4-tuple semantic linguistic scale remains the
same for both S and S, (4, is more preferable than 45), it is changed when linguistic 2-tuples are
applied. This shows that the theory of hedge algebras seems to provide a reasonable and sound
mathematical basis for CWW.

4. APPLICATION IN SOLVING SOME CLASSIFICATION PROBLEMS USING
FUZZY RULE BASED SYSTEMS

A natural question is that when applying this algebraic approach to knowledge based
systems, which novelties of methodologies and techniques 1t can bring out for enhancing the
performance of knowledge based systems? Based on a fundamental formalized basis that the
algebraic approach can provide, there are many advantages we may expect [2, 10]:

The design of words: When regarding words as playing a centric role, similarly as the role of
human-centric problem, it is for the first time words along with their fuzzy sets can
concurrently be dealt with and, moreover, be integrated as a whole. This permuts to design
words for specific applications, noting that words are application-dependent. For example,
the word “young” of age and “fast” of speed are application-dependent, as the meaning of
“young” is different when they are used in the “world” of the only scientific staffs, or of the
only scientific experts, or of the population of a state, and so on. Therefore, while words
must be pre-specified in the fuzzy set based methodologies in many studies, in the HA-
approach they are selected by leamning strategies similarly as the way the human beings
acquire their knowledge from reality. This would, of course, enhance the performance of
fuzzy rule based systems (FRBSs).
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The generality and specificity of words: This allows develop methods that are able to
simulate the interaction between words and real datasets (domain reality) as well as between
linguistic rules and d An emphasis should be made on the fact that the generality and
specificity are significant characteristics of words for cognizing the realty. We will see in the
sequel that there are sound techniques for dealing with these characteristics of words in the
algebraic approach.
Reducing complexity: In many existing methods in the literature of FRBSs, all possible
combinations of word-values of dataset features are taken into account. Evidently, the
pumber of all such rules is oo huge in comparison with the cardinality of a given dataset. In
the HA-approach we can avoid this problem, utilizing the similarity intervals of the words,
which form a binary partition of their feature universe. Then, a feature-value of the given
dataset falls into only a unique similarity interval of a certain word. Therefore, every pattern
defines only one linguistic fuzzy rule, called basic rule. This decreases significantly the
number of rules to be considered. We will point out that this technique offers meaningful
role in solving problems.
Knowledge interpretability: A crucial criterion to measure the interpretability of linguistic
knowledge is to be intended as “user ability to read and understand” that mainly concerns “a
comparison between the semantics of a knowledge base and the semantics of the knowledge
acquired by a user after reading and understanding the knowledge base.” When words
appearing in the knowledge can be designed properly, as described above, they may be just
what the user actually understands and, hence, the knowledge interpretability can be
guaranteed.
With these advantages we expect that the HA-approach may ensure enhancing effectiveness
in designing FRBSs, including fuzzy rule based classification systems (FRBCSs). The next
simulation results illustrate this assertion.

4.1. The design of fuzzy rule based classification systems using triangular fuzzy sets

The problem is as follows: Consider a classification problem & given by a dataset P = {p;=
(d, C):die D,Cie C,1=1,..,Np}, where &= (d1, di2, ..., di») € D of n dimensions, C= {C;
:1=1,...,.M } 1s the set of class names. Develop method based on Multi-Objective Optimization
Using triangular fuzzy sets to solve # with high performance and low rule base complexity.

Because of Iimited space, we present here only the simulation results. For the method’s
details, refer to {2].

Table 4 1 Comparison of fuzzy rule base complexity using the Wilcoxon test at level a = 0.05

Vs R™ R Exact P-value | Asymp P-value | Confidence interval | Exact Confidence
Al Granulanities 830 [ 70.0 >02 0.740367 [-52.4985 , 25.0426] 0.95524
[Prod./1-ALL 153.0 | 00.0 1.5258E-5 0.000267 [-235.1573 , -60.2954] 0.95524
Prod /1-ALL TUN [ 121.0 | 320 0.0348 0.033154 1294122, -0.5219] 0.95524

Table 4.2. Comparison of FRBCS performance using the Wilcoxon test at level a = 0.05

VS _ iy R™ | Exact P-value | Asymp. P-value | Confidence interval | Exact Confidence
|All Granulanties  [134.0 | 19.0 | 0.004638 0.006040 [0.740583, 3.436272] 0.95524
[Prod./1-ALL 1360 | 17.0 0003158 0.004507 [0.639143, 3.117368] 0.95524
[Prod/1-ALL TUN [1210 [ 32.0 | 0034800 0.033154 [0.116358, 2.567368] 0.95524
14
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The proposed method is applied to 17 classification datasets found in
http://sci2s.ugr.es/keel/ category.php?cat=clas. Here, we exhibit the statistic comparison tests
using the Wilcoxon test made on the simulation results of the datasets and analyze some benefits
of the approach. The comparison results given in Table 4.1 show that the complexities of the
fuzzy rule bases obtained by the proposed method are lower or more or less equal to the
complexity of those obtained by the counterpart methods. Whereas, the statistic comparison
results given in Table 4.2 show that the FRBCSs designed by the proposed method outperform
the FRBCSs designed by other methods.

The question is how these advantages »? ?Q‘
discussed above are exposed in this application. 42 U il

Fisst, the words integrated with their triangles of ¢ 02 04 06 08 1
all features can actually be designed and they a) The fizzy sets of the terms n X,

are generated by the obtained optimal fuzziness
parameters of the dataset features. For
illustration, consider dataset Mammographic for
which the optimized solution indicates that the
maximal length F[j] of the words of the feature

Jforj=1to 5, are found to be 3, 2, 3, 2 and 2, b) The fuzzy seis of the terms in Xz
pectively. The fuzzi of ¢ of the

five features are, respectively, 0.362608, 9 ? Q 0 Q Q

0.499927, 0.519758, 0.447016 and 0.427377. Ny

‘While, the fuzziness measures of the hedge L 0 WPVe)gn 0 4 o. Gu(u,c 308 y(VVc)

(Little) of the features are 0.366572, 0.529550,

0.577176, 0.655763 and 0.320246. They ©) The fuzzy sets of the terms in X;

produce the designed words and their triangles,  Figure 4.1. The fuzzy sets designed for the 3%-

e.g. for the feature F[3], as exhibited in Fig.4.1. feature of the Mammographic dataset.

As the maximal length of F[3] is 3, ie. the

optlmal solutwn points out that the words of the specificity of degree 3 are needed. We see that
the fu btained as above determine an appropriate “word stock” for each
feature potenually used for formulating knowledge rules. In reality, which words are actually
present in the rule base of a designed FRBCS depends strongly on the given dataset. In the fuzzy
set framework, the size of the mentioned “word stock” is limited rather strictly and should be
prespecified in many approaches, maybe because one has to consider all combinations of the
feature linguistic values to generate the initial rules. However, it 1s not the case of the HA
approach: we start with only the rules produced from the patterns of a given dataset, i.e. the
number of such rules is not greater than the cardinality of the dataset. The “word stock™ of
potential words produced as above can be reasonably large that seems to be flexible, reasonable
and compatible with the way human acquires their rules.

Table 4.2.a Freq ies of the of the designed linguistic values of all features in the 30
rule bases obtained by performing the 10-fold cross validation method for Mammographic dataset.

0,010, Ve Ve [LVe | ¢ [LLc|Lc [VEc| W VLS| Lc [LLd] ¢ [Lve] e VeI 151 5
F[1 34 038 12717
F[2 1 29 11 16 36 6 0
FB3)[ 1[5 [3 6 7 0 6 2720
Fi4 517 1 4 28 20|11
F[5 0 25 3]0
T (7ji7]10[ 0|0 |0 0| 6300 [11| 0 |6l| 0|89 8|6 |12]|37|55|20
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The “stock” of the designed words seems to meet the expected requirements. Although there
are until 30 rule bases produced by performing the 10-fold cross validation method repeated
three times on the dataset Mammographic, it is observed that a considerable number of the
designed words of the “word stock” were not used to formulate the optimized rule bases as it can
be observed in Table 4.2.a. Indeed, while the “word stock” of the potential words for the dataset
has 70 words (two features of having words of length < 3 have 20x2 words and three features of
having words of length < 2 have 10x3 words), there are only 28 words that are used to formulate
the rules of the 30 rule bases, i.c. there are 42 unused words. This shows that which words
necessarily selected from the “word stock” to extract optimal rule base are dependent mainly on
the given dataset and that the genetic design of words for a given classification dataset actually *
plays a ingful role in simulating the human process of drawing a rule-based knowledge
from the real world: his natural language is viewed as a word stock and he tries to formulate his «
linguistic rules representing his knowledge while carefully selecting appropriate words in his
word stock. However, an emphasis should necessarily be made on the fact that although 42
words are unused, they play still their meaningful role, as their presence does contribute to
determine the necessary semantics of the words in the stock, noting that the word semantics are
context-dependent as it can be observed in Figure 4.1.

Simularly, in the HA approach the generality-specificity of words, which depends on
whether the word length is large or small, plays also meaningful role. For example, Tab.4.2.a
demonstrates that, among the words present in the 30 rule bases, there are 147 occurrences of
words of length | and 163 occurrences of words of length 2 and only 47 occurrences of words of
length 3. Note that the more generality of words present in a rule base, the smaller number of its
rules. In contrast, the more specificity of the words present in a rule base, the more exact the
designed fuzzy system can classify. This shows that the HA-based method can find a tradeoff
between the general and the specific words selected from the word stock to represent the
knowledge drawn from the dataset.

Note that, in accordance our knowledge, the benefits analyzed above cannot be observed in
the existing approaches.

4.2, The design of FRBCSs using trapezoidal fuzzy set based semantics of words

In Section 2.4 we have presented the modelling the core of the word semantics, another
advantage of the HA-approach in modeling different features of the inherent qualitative
semantics of words. It is observed that words viewed as fuzzy information granules have
naturally their kernels. In accordance to our knowledge, this concept has not formally been
defined and examined in the fuzzy set framework. At the same time, we may imagine that this
concept is not easy to define in this framework. Next, we will show moreover that it will be
applied to generate trapezoidal fuzzy set based semantics of words and, then, applied to solve
classification problems. Again, according to our knowledge, in general in this research field, the
fuzzy sets of words are only assumed to be triangular fuzzy sets. One of obvious shortcomings
of this fuzzy set shape is that the membership degrees of these fuzzy sets around their cores
decreasg very quickly. So, it is expected that trapezoidal fuzzy sets will provide another
alternative to design FRBSs and even be better than triangular ones, where, for brief, the
proposed method above is called Triangle-Method.
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Table 4.3. The simulation resulis of the Trapez-Md vs. the Triangle-Md using PSO algorithm.

Dataset Trapezoid-method Triangle-method g g § g
#R | #C #R*#(] Ptr | Pte | #R | #C [#R*¥C| Pr [Pie| = | | & | ©
[Australi 5.00] 8.37 41.8587.72/86.86 4,10 8.83] 36.20/88.0686.38] 0.90-046 5.65 0.48
Bands 7.00[11.17, 78.1976.2872.10] 6 00| 8.70] 52.20[76.17(72.80] 1.00] 2.47]_25.99]-0.7
Bupa 8.97]19.03]170.70]77 54[69.41] 8.8321.20] 187.20/78.1368.09] 0.14]-2.17] ~16.50] 1.32]

Cleveland _ [16.47]38.87)640.19(69.86[63.40[17.17[44.37] 761.83(73.54159.46] -0.70|-5.50]-121.64] 3.94)
Dermatology | 10.87]17.43| 189.46/96.8895.52{10.90[18.17] 198 0598.03/96.07|-0.03[-0.74] _-8.59(-0.53]

Glass 16.8029.07| 488.38)80.26)72.78/13.77|32.30] 444.77|80.24|69.37| 3.03-3.23 43.61| 3.41
[Haberman 4.00| 5.00] 20.00,77.67\77.43] 3.00| 3.40] 10.20/76.91/75.76| 1.00] 1.60[ 9.80] 1.67
[Heart 8.03| 15.03)120.69/88.07|84.571 7.67]16.10| 123.4989.45/34.20 0.36]-1.07] -2.80] 0.37]
lonosphere 8.63| 9.70] 83.71/94.6790.98/ 8.97/10.07] 90.33]95.3590.22(-0.34/-0.37| -6.62| 0.76|
IM: 3 7.20111.40| 82.08/85.31/84.46] 6.87(13.43| 92.26/86.06/83.93| 0.33}-2.03| -10.18 0.53|
[Pima 5.97| 8.43| 50.33|78.53/76.66 5.97/10.20| 60.89;78.28[76.18| 0.00|-1.77| -10.57 0.48
Saheart 6.26] 9.33] 58.41|74.5570.27] 6.30}13.77| 86.7576.35(69.33|-0.04 -4.44] -28.35| 0.94|
[Sonar 5.97| 9.03] 53.91/86.84/77.29| 6.80|11.73| 79.76/88.3976.80|-0.83-2.70, -25.85| 0.49]
Vehicle 11.03/19.60|216.19|71.64/68.12/11.60{20.77| 240.93{70.54/67.30|-0.57 -1.17| -24.74] 0.82)
Wdbe 4.97] 837 41.60/97.40/95.85 4.87| 7.67| 37.35/97 62(96.96| 0.10| 0.70 4.25|-1.11
Wine 5.87] 7.17| 42.09| 1.00/98.52} 5.57| 6.43] 35.82/99.88/98.30| 0.30| 0.74] 6.27 0.22)

\Wisconsmn 6.93| 8.30] 57.52/96.74/96.45) 6 93(10.73] 74.36/97 81/96.74] 0.00[-2.43| -16.84[-0.2

Table 4.4. Comparison of rule base complexity using the Wilcoxon test at level @ = 0.1 for Trapez-Md.
[ Vs [ ® R™_[ Exact P-value [ Asymp P-value| Ci interval | Exact Confidk |
| TrasgiePsoMa | 1070 [4600] 01503 | oddmes | 1623, 1.42545]1 0.90162 —I

Similarly as above, we emphasize that in the HA-approach we can develop methods to
produce algorithmically trapezoidal semantics of words based from given fuzziness parameter
values. Since we can apply the same method of the FRBCS’s design used in Section 4.1, we
have a formal basis to show the meaningful role of the design of words based on the EnHAs
presented in Section 2.4. To deal with this question, assume that we use the same method for the
design of FRBCSs, except that words with trapezoidal fuzzy sets will be designed instead of the
triangular ones. The new method is called Trapezoid-Method. In addition, if the same
evolutionary algorithm is applied and the same number of generations for running the algorithms
is specified, we are in position to ensure that only the word design factor can influent on the
possible differences of the simulation results between the examined methods. Thus, the both
methods are run with the use of the same PSO (Particle Swarm Optimization) a/gorithm and the
same number of the generations which is specified by 1000. The obtained simulation results of
the both methods are presented in Table 4.3. At first glance we may conclude that while the rule
base complexity measured by the Diff(#R*#C) of almost datasets are negative, ie. the
complexity of the FRBCSs designed by the Trapezoid-Method has a tendency to be less than the
one of the FRBCSs designed by the Triangle-Method, there are only 4 datasets for which the
performance of the former systems is less than the one of the latter systems. Statistically, the
Wilcoxon test results given in Table 4.4 and 4.5 also confirm these conclusions. As discussed
above, this shows that the only factor that makes the Trapezoid-Method better than the Triangle-
Method is the use of the trapezoidal fuzzy set based semantics of words.




Table 4 5 Comparison of FRBCS performance using the Wilcoxon test at level & = 0.05 for

Trapezoid-Method.
I R* | R | Exact P-value | Asymp. P-value | Confidence nterval IExact Confidence
[1210 | 320 | o034 | 0033154 | [1765545.49465) | 095524
Since in [2] it is d ated that the Triangle-Method is better than the counterpart fuzzy

set based methods, these results confirm the meaningful role of the design of words with the
trapezoidal fuzzy set based semantics and, hence, the practical value of the HA-approach [10].

4.3. The design of hedge algebra based controllers

Analyzing single-conditional fuzzy linguistic rule in natural language, we have a feeling that
human beings formulate their fuzzy rule based control knowledge acquired from the reality
based on their discovering direct or inverse proportional relations between physical variables,
For example, the relation between two variables electric intensity 7 and the seed SP of an
electrical motor can be formulated as “If  is small then SP is large”, which is at least deduced
from the inverse proportional relation between two numeric physical variables “intensity” and
“speed” observed by the user. That is the order-based semantics of words is essential for
representing human rule based knowledge. This implies that any mathematical model
repy ing such k ledge must preserve these ic order relati of lingu
variables. In the case of multiple-conditional fuzzy linguistic rules, the relation between two
variables is much more complicated, however, every rule is formulated based on such relations
above between every two variables.

Control knowledge is expressed by the following set of fuzzy linguistic rules:
If X is 4y and ... and X, is 4,, then ¥isB,i=1,...,n “.1)

These rules describe dependencies between linguistic variables X,7 =1, ..., m, and ¥, where 4y,
J=1,...,m, and B, are words of the lingustic variables X, and % respectively, fori=1, ..., n.

HAs have found some applications to solve efficiently some control problems published in
[15- 18, 19, 20]. Although they are not many, but the significant thing seems that this efficiency
comes just from the soundness of the HA-approach. In this section, we explain more obviously
why we assert that the HA-approach to this field is sound and, for an additional illustration, a
new result will be presented shortly to expose an additional benefit of the HA-approach. In [19,
20] we have pointed out several weak points of the fuzzy set based approach to solve control
problems. Here, in order to show fundamental advantages of HA-approach we summarize main
components, considered as hard problems, that influence the effectiveness of a general controller
in the fuzzy set framework:

Membership problem: To design the semantics of words of linguistic variables present in

(3.1), which are represented by fuzzy sets designed in many ways and assigned to words by

the designer. The parameters for defining the designed fuzzy sets are many since these fuzzy

sets are in general designed independently from each other.

Implication operator problem: To represent every fuzzy rule 7; of (3.1) as a fuzzy relation

Rix, ), i=1to n, where x is an m-vector, utilizing an -norm or t-conorm to aggregate m
conditions of the rule and an implication operator u — v, u, v € [0,1], to model the if-theff
semantics.
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Aggregation problem: To aggregate also the obtained relations R, to produce one relation R,
which can be considered as mathematical model of the control knowledge given by (3.1).
Composition inference rule problem. To define a composition inference rule based on the
following scheme: for an input xo, compute the output {control action) y, as follows:

(1) Bo = A(xo) ° R; and (ii) yo = defuz(By), where A(xy) is a fuzzy set obtained from xo by a
fuzzification method, ° is a selected composition and defuz is a defuzzification method.

We see that such a method depending on several well-known hard problems mentioned
above seems to be so complicated that it may make the method to become a black box, i.e. it is
difficult to recognize the behavior of the method to improve it. More importantly, the mappings
of words to fuzzy sets and control methods described above do not preserve order-based
structure of the linguistic fuzzy control knowledge. This weak point seems to be very
fundamental on the mathematical and logical viewpoint and it may make the effect of these
methods decreased.

In the HA-approach the general method is very simple. However, we first discuss about the
d of the matt ical foundation for the proposed method.

The soundness of the HA-approach originates from two main facts. The first one is the
order-based nature of linguistic knowledge, as discussed at the beginning of the section. The
second one is that HAs model properly the order-based semantics of the words of variables. The
order-based semantics of words appearing in human knowledge seems to be crucial and
valuable, but it was ignored in almost studies of this field. For example, given a well-known rule
saying that “if body temperature is very high then it is serious”, we may imply that “if body
temperature is extremely high then it 1s very serious”. That is a proportional relation between the
variables TEMPERATURE and HEALTH_STATUS in terms of the order relation on the
linguistic domains appears.

Fortunately, hedge algebras model the order-based semantics of words and SQMs are
isomorphisms in the category of order-based structures. Based on this, the following reasoning
method was proposed:

Consider every rule r, of (3.1) as defining a linguistic point (4, ..., Am, B;). Hence, the rules

1n (3.1) determine approximately a linguistic surface S;. Note that the shape of S, depends

on the order relationships between the words of and between the variables present in (3.1).

Define suitable hedge algebras of the variables present in (3.1) and specify fuzzimness

parameter values of each variable. Then, the SQMs, &y, of the variables are fully defined

{Section 2).

Using &,/ =1, ..., m, transform S, into a Numeric surface Sy.

To select an interpolation and extrapolation method on Sy.

It is very simple because the determination of HA for every variable is very easy, since its
words are almost identical with words in natural (English) language. In addition, in practice of
fuzzy control, only two hedges are sufficient. The number of the independent fuzziness
parameters is very small, only two. It is important that they are the parameters of the whole
variable, irrespective how many words are present in the contro! knowledge. When specifying
values of these parameters, all the quantification characteristics of HAs, including their SQMs,
are fully defined and calculated. In addition, the interpolation and extrapolation are familiar for
any ones. Now, since there are only few numeric interpolation methods, with the simplicity
above analyzed, it is interesting that the only difficult thing to be determine is the independent
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fuzziness parameter values, which, however, can feasibly be determined by trial-error, or even
by an evolutionary algorithm [19].

It is most essential, however, that in modeling the mathematical model should preserve the
math-structure of words of interest. Since Sy is the isomorphic image of S; and the shape of Sy is
similar to §;, we have a formal basis to believe that the interpolation on Sy will prodncﬁ%
appropriate control action values. All of these explain why we regard the proposed HA-based
method as being sound. It is maybe by this reason the initial studies based on this method in this
field can achieve more effective results in comparison with counterpart ordinary fuzzy control
methods [15 18, 19, 20].

To show further that a sound method will bring out the effectiveness in applications, we
present below some plots describing the control effect of hedge algebra based controllers
(HACs). The design of HACs comprises the following tasks:

Determine 2% = (X, G, C,, H}, <) for every

linguistic variables X present in fuzzy

model (4.1). In recent practice, it is

Table 4.6. The system parameters with
ATMD.

. .| Massm, Damping ¢;] Stiffnessik
sufficient to use two hedges for each H), Storey i (10 kg )' (0N El‘ 10° Nim)|
denoted by L, and V}; 1 450 2617
Determine the fuzzy model using words in 715 3456 2937

terms of elements the determined HAs A,
as, usually, words present in (4.1) are of the
form, for instance, “Negtive Big” (NB) or o
“Positive Small” (PS), .... This task can be realized by establishing the word-transformation
that maps the words of in (4.1) into suitable words of the determined HAs. To preserve the
semantics of words, all the established transformations should preserve the order-based
relationships and the opposite meaning of terms, e.g. the opposite terms NB and PB are
transformed respectively into ¥,S and ¥,B, which are of opposite meaning in their respective
HAs.

Determine appropriate semantics of words of each AX; by searching the independent
fuzziness parameter values of J, the values of fin(c,) and (L), for every X

Calculate the grid of points that define approximately the surface S, and determine an
interpolative method on §;.

104918 5970

16
ATMD)

Table 4.7. Rule base for the Table 4.8 Rule base for the
actuator on the 1%storey. actuator on the 15%-storey.
N z P S N ¥4 P
x EN
NB NB | NM NS NB NB NM NS
NS NM [ NS z NS NM NS z
z NS z PS z NS z PS
PS z PS PM PS z Ps PM
PB PS PM PB PB PS PM PB

For illustration, we present some results of the
application of the design of HACs and opHACs to a
vibration problem of the control of high-rise structural
systems presented in Figure 4.2 with active tuned mass Figure 4.2. The structural system.
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damper (ATMD) against earthquakes to show the advantages of the proposed HA methodology.
m These controllers were examined and simulated with the recorded seismic data of three typical
X earthquakes, El Centro, Northridge and Kobe, to demonstrate their performance and, by this, to
contribute to state the advantages of the approach. A high-rise building structural system with
ATMD assumed to have fifteen degrees of freedom all in a horizontal direction described in
Figure 4.2, was taken into account to make a comparison study of distinct controllers.

Note that the fuzzy controllers (FCs) examined here were designed by the same method
examined in [21].

iy, 1) Determining the control problem and its discrete control model: As it can be seen in
we Figure 4.2, the system is modeled with two active actuators of different types to suppress

structural vibrations against earthquakes. Accordingly, one is installed on the first storey and the

other on the fifteenth storey, since the maximum inter-storey shear force occurs on the first
@n  storey and the maximum displacements and accelerations are expected from the top storey of the

structure during an earthquake, assuming equivalent storey stiffness and ultimate capacities. In
& Figure 4.2, m, is a movable mass of the ground storey and my, ms, ..., ms are the masses of the
o remaining storeys, where the mass of all storeys include both the ones of storeys and their walls.
| & The mass mq is of the ATMD installed on the fifteenth storey. The variables xi, xz, %3,..., %14 and
xys indicate the horizontal displacements and x; indicates the displacement of the ATMD. The
variable xo is the earthquake-induced ground motion disturbance to the considered structural
system. All springs and dampers are acting in the horizontal direction. The system and ATMD
parameters examined in [21] are given in Table 4.6, which are used here for a comparative
™E  study.

Table 4.9. Linguistic transformation for
i %55 %, %5 and XK.
e NB N z P PB NVB| NB | N 4 P | PB |PVB

Table 4 10. Linguistic transformation for u, and u;5

Lt Litl Very Litile Litle Very
iz small :rxnaﬁ w Ialrz large smal | MM | smalt | W | large | 1aree large

Based on the discrete control model established based on the dynamic model of fifteen-
degrees-of-freedom structural system equipped with ATMD given in [21], the fuzzy rule bases
of the two active actuators that were examined in that paper are given in Tab. 4.7 and 4.8.

2) Constructing control algorithm for the desived HAC: As discussed at the beginning of
Section 4.3, the HA-rule base can be obtained by the selection of appropriate word-
transformations, which are given in Tab. 4.9 and 4.10.

. The design of HACs: The semantics of words of HACs were designed independently
from the recorded seismic data of the three earthquakes mentioned above, i.e. not based on the
semantics of words used in the common reality of earthquakes. In this situation, for all linguistic
variables, we should have p#(L) = u(h.) = (V) = p(h) = 0.5, fin(smally = 0.5; fin(large) = 1 —
fm(small) = 0.5. Even though, by simulation results, it will be seen that such HACs still work
better than the counterpart standard FCs in controlling the system against earthquakes.

. The design of optimal HACs (opHAC): The fuzziness parameters for determiming the
semantics of words used in the context of earthquake data were optimized using the seismic data
of El Centro earthquake in USA given at http://www. vibrationdata.com/elcentro.htm, which
were recorded at the El Centro Terminal Substation Building on May 18th, 1940 with Peak
Ground Acceleration (PGA) 0.35g, will be used for the design of opHACs. The idea of solving

Aol it
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the fuzziness parameter optimization problem is described as follows: gince it is_ di(ﬁcult for the
designer to determine the appropriate fuzziness parameters for a pracn_cal application problem,
the data of El Centro earthquake is chosen randomly among three mentioned earthquakes as the
training data to determine the near optimal fuzziness parameters for the earthquall(e protective
structural system under consideration. They arc regarded as the word _semantics used for
describing the seismic data in the reality of earthquakes. The goal function of the fuzziness
parameter optimization problem is defined as follows:

2 1 2 -

gmmatma g it g 50 B, g oy ) andy o 5; B

al a!! ali
where x, indicates the horizontal displacement of the i-th storey, a, indicates the absolute peak
displacement, for i = 1, ..., 15, and velocity vectors of the uncontrolled state of the structure
excited by earthquake ground shaking; x;s indicates the displacement of the ATMD; » is the
number of control cycles, the a,’s are specified above; and the positive weights wy, wz and wy
satisfy the equality w; + w; + ws = 1. The values of the weights should be carefully selected in
the design of opHAC:s for the application.

flc) E) fm(e) PG
O G ) (v (V) (Us)
0.40 0.40 0.20 0.594037 0.500196 0.516618 0.543988

For simplification of the evolutionary algorithm, only the semantics of the words of the
variables X; and X are optimized and the weights w), w; and w; are determined by trial-error.
For the variable U (control action ), its fuzziness parameters are defined as follows: fm(small)=
M(Luttle) = 0.5. Then, the optimal fuzziness parameter values of % and X5 and the weight values
were found, as follows.

4
I
!
.

Uncontrolled_ _ _ Uncoatrolled — ——

- Fuz Control Fuz. Coutrol
_HAC HAC -
opHAC T T T opHAC i

S

008 012 016 020 024 010 015 020 025 030 035 020 030 040 050 0%

Figure 4.3. Peak Storey Figure 4.4. Peak storey N
displacements (m), El Centro displacements (), Northridge Figure 4 3. Peal Storey
Earth al; carthauake. displacements (m), Kobe 3
arthquake g Rarthanake :
e
&
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{m) (m)
o6 : Uncontrolled - - e 4 Uncontrolled
0.4 _Fuz"confyol ¢ Fuz control  ———

0.2

0
02 s
L ?:HCAC —_—
T3 4 ©
0 5 10 15 20 25 30 s 40 45 0 5 10 15 20 25 30 35 40 45
W& Figure 4.6. The time displacements responses of Figure 4.7. The tume displacement responses of
33 the top storey (x;s) of Kobe earthquake. ATMD (x,6) of Kobe earthquake.

*t To see how well work the designed HACs and opHACs in comparison with the standard
% designed FC, for reducing space of the report, we quote here only few plots of the simulation
results studied in [22]:

b (i) The displacement response: Figures 4.3 — 4.5 represent the peak displacements of all

| storeys, which indicate that the peak displ produced by the d d controllers are
-~ increased from FC to HAC and then to opHAC for all fifteen storeys of the building and in all
™ fhree examined earthquakes.

(ii) The time responses of the displacements of only the top storey (x;s) and the ATMD (x16)
‘S for the three controllers are depicted in Figures 4.6 and 4.7, respectively.

5. CONCLUSIONS

We have argued that HAs seems to be a sound mathematical structure for modelling and
handling immediately the semantics of words. This assertion can be drawn from fundamental
mathematical, logical and practical bases. On logical viewpoint of semantics of words, as
syntactic expressions, the semantics of words should point at some things in reality. That is one
has to think of at which items in reality a vague linguistic value like “beautiful” points at when a
person uses this word. We have argued that he does not think of a “fuzzy set” of certain beautiful
items. Stemming from the demand of human decision making we have pointed out that the word
“beautiful” a human being uses aims fo make a comparison between properties of certain items
in the reality. This viewpoint seems to be much clearer if, for instance, we put this word in a
context of words that includes “more beautiful”, “very beautiful” and “rather beautiful”.

On the practical viewpoint, it is natural that human beings handle immediately their words
in their daily lives. Therefore, any theory that aims to simulate human capabilities should
provides a sufficient mathematical formalism to deal immediately with words and their
semantics that human being assign to them in reality. It can be observed that word-domains of
linguistic variables can be viewed as order-based structures induced by the natural qualitative
: ics of words. Therefore, HAs can be considered as a natural formalism for modeling the
semantics of words. We show also that HAs are the formalized theory that deal directly with the
” inherent qualitative semantics. According to our knowledge, up to now only hedge algebras
" satisfy these requirements.
it In addition, as we have presented in the report, they have been developed based on a stnct

axiomatic foundation, as their name “algebra” says. R ber that all pts “fi A

e

-
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wp » and ically quantifying mappings” are developed based on a
axiomatization manner.

1t offers many theoretical and methodological advantages and, hence,' we may expect ?hatil
could bring out effective applications in different areas. The effectlvguess of thev initial
applications of HAs in some distinct fields presented in this report contribute to realize this
hope.

Acknowledgements. The research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under Grant Number 102.05-2013.34.

REFERENCES

1. Mendel . M. et. al. - What computing with words means to me, IEEE Comput. Intell
Mag. 5 (2010) (1) 20-26.

2. Thang Long Duong, Cat Ho Nguyen, Pedrycz W, Thai Son Tran - A Genetic Design of
Linguistic Terms for Fuzzy Rule Based Classifiers, Int. J. Approx. Reason. 54 (2013) 01-
21.

3. Cat Ho Nguyen, Wechler W. - Hedge algebras: An algebraic approach to structures of sets
of linguistic domains of linguistic truth variable, Fuzzy Set and Syst. 35 (3) (1990) 281-
293,

4. Cat Ho Nguyen, Wechler W. - Extended hedge algebras and their application to Fuzzy
logic, Fuzzy Set and Syst. 52 (1992) 259-281.

5. Cat Ho Nguyen - A topological completion of refined hedge algebras and a model of
fuzziness of linguistic terms and hedges, Fuzzy Set and Syst. 158 (2007) 436-451.

6. Cat Ho Nguyen, Van Long Nguyen - Fuzziness measure on complete hedge algebras and
quantifying semantics of terms in linear hedge algebras, Fuzzy Set and Syst.1 58 (2007)
452 —471.

7. 13/ Nguyen Cat Ho - A Topological Completion of Refined Hedge Algebras and a Model
of Fuzziness of Linguistic Terms and Hedges, Fuzzy Sets and Systems 158 (4) (2007)
436-451.

8. Nguyen Cat Ho and Nguyen Van Long - Fuzziness Measure on Complete Hedge Algebras
and Quantifying Semantics of Terms in Linear Hedge Algebras, Fuzzy Sets and Systems
158 (4) (2007) 452-471.

9. C?t Ho Nguyen, Van Nam Huynh, Pedrycz W. - A Construction of Sound Semantic
Linguistic Scales Using 4-Tuple Representation of Term Semantics, Int. J. Approx.
Reason 55 (2014) 763-786.

10. Cat H? Nguyen, Thai Son Tran, Dinh Phong Pham - Modeling of a semantics core of
linguistic terms based on an extension of hedge algebra semantics and its application,
Knowledge Based Systems 67 ( 2014 ) 244-262.

11. Zadeh L. - Fuzzy logic = computing with words, IEEE Transactions on Fuzzy Systems 94
(2) (1996) 103-111.

12 Hen'era‘F and Martinez L. - A 2-Tuple Fuzzy Linguistic Representation Model for
Computing with Words, IEEE Transactions on Fuzzy Systems 8 (6) (2000) 746-752.

24

|




4

e
13

3E

W

Hedge Algebras, the semantics of vague linguistic information and application prospective

13.

21.

22.

Martinez L, Ruan D, Herrera F. - Computing with words in decision support systems: an
overview on models and applications, International Journal of Computational Intelligence
Systems 3 (4) (2010) 382-395.

. Martinez L, Herrera F. - An overview on the 2-tuple linguistic model for Computing with

Words in Decision Making: Extensions, applications and challenges, Information
Sciences 207 (1) (2012) 1-18,

. Hai Le. Bui, Duc Trung Tran, Nhu Lan Vu - Optimal fuzzy control using hedge algebras

of a damped elastic jointed inverted pendulum, Vietnam Journal of Mechanics 32 (4)
(2010) 247-262.

. Hai Le Bui, Dong Anh Nguyen, Duc Trung Tran, Nhu Lan Vu - Application of hedge

algebra-based fuzzy controller to active control of a structure against earthquake, Struct.
Control and Health monit. 20 (2013) 483-495.

. Hai Le Bui, Duc Trung Tran, Nhu Lan Vu - Optimal fuzzy control of inverted pendulum,

J. Vib. and Control 18 (14) (2012a) 2097-2110.

. Hai Le Bui, Dinh Duc Nguyen, Nhu Lan Vu and Duc Trung Tran - A study on the

application of hedge algebras to active fuzzy control of a seism-excited structure, J. Vib.
and Control 18 (14) (2012b) 2186-2200.

. Xuan Viet Le, Cat Ho Nguyen, Nhu Lan Vu - Optimal hedge-algebras-based 11

Design and Application, Fuzzy Set and Syst. 159 (2008) 968— 989

. Nguyen Cat Ho, Vu Nhu Lan, Le Xuan Viet - Quantifying Hedge Algebras, Interpolative

Reasoning Method and its Application to Some Problems of Fuzzy Control, WSEAS
TRANSACTIONS on COMPUTERS 5 (11) (2006) 2519-2529.

Guclu R, Yazici H - Vibration control of a structure with ATMD against earthquake using
fuzzy logic controllers, Journal of Sound and Vibration 318 (2008) 36-49.

Hai Le Bui, Cat Ho Nguyen, Pedrycz Witold, Duc Trung Tran and Nhu Lan Vu - Active
control of earthquake-excited structures with the use of hedge-algebras-based controllers,
Tap chi khoa hoc cong nghé (Journal of Science and Technology) 56 (6) (2012) 705-734.

TOM TAT

DAI SO GIA TU, NGU NGHIA CUA THONG TIN NGON NGU' MO
VA TRIEN VONG UNG DUNG

Nguyén Cat H8" ", Tran Thai Son', Vii Nhu Lan"?
Vign Céng nghé Thong tin, Vién HLKHCNVN, 18 Hoang Qudc Viét, Cau Gidy, Ha NGi
2Pai hoc Thing Long, Nghiém Xudn Yém, Hoang Mai, Ha Ngi, Viét Nam

*Email: ncatho@gmail.com

Muc tiéu ciia bai béo tng quan 13 muén chimg t dai s6 gia tir thyc sy md hinh héa duge
ngit nghla dimg din cia ti ngdn ngit ciia cic bién, dua trén co s¢ lap luan ring ngit nghia dmh
tinh vén c6 cia ching phai bidu thi qua cac quan hé thiy tyr gifta cac tir cita cing mot bién ngdn
ngir. Ngit nghia nhwr vdy dugc hinh thinh trong thyc tién do nhu cdu trong qué trinh 14y quyét
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dinh trong cude séng hang ngdy cta con ‘ngudi. Pac diém mé hinh héa ngif nghia clia tir ngén
ngit bing quan hé thirc t lam cho céch tiép can dai 6 khéc biét hoin toan c4c cach tiép cn hign
tai va lam cho dai s6 gia tir tros thanh I thuyét dAu tién c6 thé thao tic trye tiép trén céc tir ngdn
ngir. Ching t6i 1am sang to t\mg bude phimg dic trung vi céc tinh chét khac biét biéu thi qua
céc quan hé thit tw trong céch tiép cén ndy va qua dé chimg t6 rang cach nep c4n la diing din va
14 co 50 bao dam tinh hign qua trong viéc budc diu giai quyet céc bai toan g dung. Qua dé
chu-ng to dat s6 gia tir c6 nhidu bira hen trong viéc phat trién c4c phwong phép luin dé gidi quyét
cac bai todn thue céc linh vuc u'ng dung khdc nhau. Dé 1am séng to cac khang dinh nhw vy,
chiing t6i s& téng két céc két qua img dung cia dai s gia tir trong mot s6 vin dé thude Hnh vire
khai phé tri thirc va diéu khién mo.

Tir khoa: ngit nghfa dua trén thir tr, tinh mé cita tir ngdn ngi¥, ngit nghia dua trén tip mo, hé my
dua trén tri thirc luat, bai toan phén 16p, diéu khién mo.

Cat Ho Nguyen, Thai Son Tran, Nhu Lan Vg%

. i

d
loa
X





