

Journal of Science and Technology 49, Number 5 (2011) 69-78

69

A SIMPLE ALGORITHM FOR FINDING FAST, EXACTLY TILES
INTERSECT WITH POLYGONS

Nam V. Nguyen1, Nam M. Nguyen1, Bac H. Le2

1
Vietbando, Vietnam

2
Faculty of Information Technology, University of Science, VNU-HCM

Received September 30, 2011

ABSTRACT

In this article, we present a simple algorithm that allows us to find tiles intersect quickly and

precisely with a given polygon. This is the one of important tasks in maintaining tile system for

Web Map services today. In this study, 75% of tiles can be successfully saved by use of our

newly developed method as compared with the conventional Minimum Bounding Rectangle

method when applying for administrative regions of Vietnam. In addition, this algorithm is

simple and easy to implement.

Keywords. computational geometry, spatial data mining, web map, polygon.

1. INTRODUCTION

The maps we are familiar with are powered by tile sets – collections containing hundreds of

thousands of individually rendered images that stitch together to form a larger map view. For

instance, Microsoft (www.bing.com/maps/) and Google maps (maps.google.com) are such

systems. Tile sets are useful because they allow users to pan and zoom around a map with a web

browser, but creating and maintaining a tile set is challenging. Tile generation demands a

considerable amount of computing power and can take days depending on the size of the region

being rendered. At present, Microsoft’s tile system [4] (only for road 2D) supports 24 levels of

maps that means we must render and store 4
0
 + 4

1
 + … + 4

22
 + 4

23
tiles in storage devices as

shown in Figure 1.

Figure 1. Tile System

(Resource from

http://msdn.microsoft.com/en-

us/library/cc451900.aspx)

http://www.bing.com/maps/
http://maps.google.com/

Nam V. Nguyen, Nam M. Nguyen, Bac H. Le

 70

In those systems, space is tessellated into a grid of tiles at each level, and each spatial object

is represented by the set of tiles it intersects. When a region updated, we must specify which tiles

have to be re-rendered. In principle, at each level, after getting a minimum bounding rectangle

(MBR) of the region, we find tiles that intersect with MBR, here so-called
R

1T , and we only

render these tiles. This method is simple and easy to implement.

However, as the difference between the bounding rectangle and the polygon is large, too

many unexpected tiles (tiles that do not intersect with the polygon) are re-rendered. As you see

in Figure 2, the number of the necessary tiles (in light red) is much smaller than that of the

unexpected tiles. At the higher zoom level, more unexpected tiles increase. As a result, this

algorithm actually is not so effective in practice. Another method should be mentioned here is

that we can firstly find limits of row and column of the polygon, then check if the tiles intersect

with polygon or not. This method leads to tile set as expected, but the cost for checking is so

expensive.

Figure 2. Spatial object is decomposed to a list of tiles at a given grid level

In this study, we solved all these issues by developing an algorithm that allows us to quickly

and precisely find the tiles that intersect with a given polygon. Our algorithm uses border(s) of

polygon as a guideline to specify tiles on border of polygon, and to encode these tiles in order to

find all expected tiles. In addition, this algorithm is simple and easy to implement.

2. PRELIMINARIES

A regular grid G is a tessellation of the Euclidean plane by congruent rectangles. Each cell

in the grid can be addressed by index (r, c), and each vertex has coordinates (c * dx, r * dy) for

some real numbers dx and dy representing the grid spacing. For this article, we interpret the cell

as a tile. Each tile has four sides: left, top, right, bottom. Each side is represented by two pairs of

coordinates that can be calculated from coordinates of tile.

A simple polygon P is defined as an ordered list of vertices P ={v0,v1,v2,…,vn-1}. A segment

is a pair of two adjacent vertices 1(,)i i iv vs  and 1 1 0(,)n n vs v  . In the case of the polygon

has more than one part (generally, one outer ring and some inner rings), we treat this polygon

A simple algorithm for finding fast, exactly titles intersect with polygons

71

as a set of polygons – each ring is a polygon, so P is represented as  0 1 2 2 1, , ,..., ,k kr r rP r r 

with 0r is outer ring, and other
ir ’s are inner rings, we use term polygon with hole(s) for this

polygon type, see Figure 3.

Figure 3. A polygon with hole(s)

Let G be a grid of tiles that covers fully a polygon P. Our task is to find set of tiles T that

satisfies the following condition:

{ : , }i i iT t t G t P   

Our approach based on checking if a segment intersects [5] with sides of tile to change tile

state. In this algorithm, we need a data structure that allows finding a key quickly and to update

state related to that key.

Let M be a map structure based on variants of B-Tree index [1, 2, 3]. M contains pairs of

(key, state) where key is tile index and state indicates that number of cut-edge of the tile with key

is odd or even, value of state will change when there is a segment goes out of the tile key as

shown in Figure 4.

Figure 4. Illustrations for the segment that go out of the tile sides

This algorithm is depicted as following:

Input: Polygon P and grid of tile T

Output: Set of tile pT intersects with P

Nam V. Nguyen, Nam M. Nguyen, Bac H. Le

 72

 in

for each ring

,)

)

()

 (

(

M

P

P

P P

P

i

i i

M

P

M

L

P

L FindBorderTi

r

M T

M

T M

les r

M

akeCe

ergeT

llRan

il

ges M

es L











M

PL is a list of iM data structures. The FindBorderTiles function specifies tiles on the border of

a ring and store these tiles in iM . The MergeTiles function merges ()iM s into an only PM of

the P polygon. The MakeCellRanges function bases on PM to finds all tiles that intersect with

the P polygon.

3. ALGORITHM

3.1. Finding border tiles

Let s0 = (v0, v1), in order to find tiles of T that this segment crosses, in the first step, we find

tile that contains vertex v0. This tile names the current tile ct . The segment 0s is 1(,)i i iv vs 

with 0i  . In the second step, we check intersection of the is segment with sides of the ct tile.

If any side is cut, stop checking other sides of this tile. We don’t care coordinates of intersection

point, all we need know is which side of tile intersects with segment.

When segment is goes out of the current tile ct , we update state of this tile in iM data

structure and find next tile nt to continue. Note that tile ct and tile nt has one common edge, so

we do not perform such “cut-checking” for this common edge for tile nt because segment is

goes into but goes out of tile nt .

 Update state of tile

State updating depends on which side is cut. We classify two groups: horizontal side (top and

bottom) and vertical side (left, right). Each group has properly updating method. Here, we

imply EVEN  true and ODD  false.

With horizontal side, if this tile is available in iM structure, nothing to do. Otherwise, we

insert (,) (,)ckey st Eate t VEN into iM .

With vertical side,we have two following cases:

─ Cut-edge is left side of tile

If this tile is available in iM structure, state of this tile changes the following:

EVEN ODD and ODD EVEN . Otherwise, we insert (,) (,)ckey state t ODD

into iM .

─ Cut-edge is right side of tile

A simple algorithm for finding fast, exactly titles intersect with polygons

73

If this tile isn’t available in iM structure, we insert (,) (,)ckey st Eate t VEN into iM .

Otherwise, we find tile that is right of this tile to update.

 Finding the next tile

The next tile is specified by which side of the current tile the segment is goes out of. Let

cr and
cc are row index and column index of

ct correspondingly, the next tile is identified

the following formula, see cases in Figure 4:

- (1) : ,n c n ca r r c c  

- () : , 1n c n cb r r c c  

- () : ,1n c n cc r cr c 

- (,) : 1n c n cr cd r c 

The next tile nt becomes the current tile ()c c nt t t . In Figure 5, the dot-line indicates

the guideline for seeking border tiles.

Figure 5. Moving on grid of tiles and border tiles

We repeat the second step until the vertex vi+1 of the segment si is inside any tile. Go to next

segment si+1 = (vi+1,vi+2) and apply the second step for this new segment. In the case both vertices

of considering segment is contained in the same tile, we fire this segment and go to next segment

si+1. Notes that with new segment we must check all sides of the current tile.

The finding process stops when all the segment of the polygon is considered. We have

border tiles of ring and cut-edge state of these tiles.

By this searching method, number of odd cut-edge state in a column is always even. This

feature is basis for finding all tiles that intersect with the P polygon.

3.2. Merging border tiles

The below procedure isn’t applied for simple polygon that has no hole. Applying the

FindBorderTiles function for each ring: (,)i iFindBorderTiles rH T . Border tiles of polygon

P is calculated as follows:

0 1 2 2 1k kH H HH HH     

Supposing that polygon in Figure 5 has an inner ring as shown in Figure 6. The new polygon

is shown in Figure 7.

Nam V. Nguyen, Nam M. Nguyen, Bac H. Le

 74

Figure 6. Border tiles of inner ring

The merge method is depicted the following:

0

.

.){

 state=!(t . ^ .)

 H (,)

 }else{

 {

H (. .

}

,)

(

i

k i

k

HH

k k

k k

H

key H

key H

state t state

key state

t key

H

foreach t

if

t state

t











The symbol ^ is XOR operator in Boolean algebra. Figure 8 shows encoded tiles of column

7 of polygon in Figure 7.

Figure 7. Encoding compound polygon-two rings

Figure 8. Border tiles of two rings

A simple algorithm for finding fast, exactly titles intersect with polygons

75

3.3. Finding all tiles that intersect with polygon

Let LC and UC be left most column and rightmost column of grid that intersect with the

polygon P .
c

PT is all tiles of column c that intersect with the polygon P . To save storage

space, we manage these tiles by list of ranges. Each column has a list of ranges. All tiles that

intersect with the polygon P can be defined as the following:
21

...L L UL CC C C

p P P P PT T T TT  
    

Our algorithm is depicted as follows:

order by the column and row

foreach c in (C

Sort

:){

 ()

}

A

 T

p

p p

p

L U

c

P

c

P P P

A M

C

T

T

FindTileRanges c

T T







 

We create an array of border tiles PA from PM , then sort this array PA in increasing order

by column and row. After sorting, tiles in a column is grouped together and separated into some

continuous tile blocks – see in Figure 9, we have two blocks in column 7:{1:2} and {4:6}.

Basing on column value of each item in the array PA , we can specify lower index
c

lI and upper

index
c

uI of each column c in PA - they are 0 and 3 for column 2 in Figure 9.

Figure 9.Sorted border tiles array

The FindTileRanges function finds and merges blocks in the column c to create tile

ranges. State of block determines adjacent blocks whether they can be merged to make bigger

blocks or not. Block’s state depends on number of ODD tiles ODDN . If ODDN is odd then block

state is ODD . Otherwise, it is EVEN . Pairs of adjacent ODD blocks is merged into bigger

blocks. State of new block is EVEN . Notes that, when two ODD blocks merged, new block

can overlay one or some EVEN blocks. Such EVEN blocks should be deleted. After merging,

there are only EVEN blocks in the column and these blocks contain tiles that we want to find.

These blocks are used to create ranges for this column.

After the sketch of the FindTileRanges function, it’s time to go into more details. The

Nam V. Nguyen, Nam M. Nguyen, Bac H. Le

 76

algorithm scans tiles
c

kt from lI to [,(])u l uI II k to compute state of blocks and to merge

blocks as soon as possible. Let
c

iR is
thi range of the column c .

First step: The lower bound of the
0

cR range is .
l

c

It row . Initial state of range
0

cR is

.
l

c

It state . Second step: Moving to higher index to find the upper bound of range
c

iR ,

block’s state will change depending on next tile’s state.

1

){

 .

 .

 1

 ((. . 1) ||

 (.

while (

 while(() & &

(state=ODD))){

){

c

P

l

u

c

k

c

k

u

c c

k k

c

k

T

k I

lower t row

state t state

k k

t row t row

if t state ODD

k I

k I











 

 







 if(state=ODD){

 state EVEN

 }else{

 state ODD





1

 }

 }

 .

 . ((,

))

 k k+1

c

k

c

P

upper t row

T Add CreateNewRange lower upper







 }

The tiles that have EVEN state don’t change state of block. If the expression

1(. . 1)c c

k kt row t row   is satisfied, it means that the tile
c

kt belongs to the other block, the

current state will decide whether this range can expand or not. We have two following cases:

─ The parameter state is EVEN : 1.
c

kt row becomes the upper bound of the
c

iR

range. Finding for the
c

iR range finishes. Starting a new range 1

c

iR  with the lower bound

is .c

kt row . Go to second step.

A simple algorithm for finding fast, exactly titles intersect with polygons

77

─ The parameter state is ODD : this range will contain next block. That means

the tile
c

kt and tiles that are located between these two blocks belong to this range
c

iR . Go

to second step.

Figure 10. All green tiles intersect with polygon

Applying this algorithm for all columns in range [,]L UC C , we have expected tiles, figure 10.

4. EXPERIMENT

The experiments were done one core of an Intel® Core™ 2 Duo CPU E6750 @2.66GHz,

2.67 GHz, 2GB main memory. The program was compiler by the Visual Studio C++ 2008

compiler using optimization level 3.

We deal with the world borders data that was obtained from http://mappinghacks.com/data/.

We executed our algorithm for Vietnam’s border at some levels of tile system (see table 1). The

results from Minimum Boundary Rectangle method is shown in column MBR and ones from our

algorithm are shown in column Extracted. Calculating time of our algorithm is in column Time.

Table 1. Results of algorithm for Vietnam’s border at some levels of tile system

Level MBR Extracted Time(ms)

18 57,404,600 14,589,034 62

19 229,596,880 58,295,914 125

20 918,387,520 233,061,707 265

21 3,673,464,728 932,002,989 547

22 14,693,601,405 3,727,524,561 1,140

23 58,773,890,609 14,909,123,888 2,375

24 235,093,843,800 59,634,549,289 4,891

In table 1, it is clearly seen that our algorithm saved up to 75% of tiles as compared with

the MBR method.The problems merging map tiles is solved completely for two polygon types:

simple polygon and polygon with a hole(s). Thus, the algorithm can expand for other simpler

http://mappinghacks.com/data/

Nam V. Nguyen, Nam M. Nguyen, Bac H. Le

 78

geometry shapes such as point and polyline is very easy.

4. CONCLUSION

In this paper, we present a simple algorithm that allows us to find tiles intersect quickly and

precisely with a given polygon. The implementation of this algorithm is very easy. All these

features make the proposed algorithm very attractive to practical implementation. As shown in

the results of the test on the simulated data source, it showed that the algorithm can be applied to

maintain consistence of the tile system when their data source changed. The algorithm can apply

not only for polygon but also for other geometry types such as polyline, multi-polyline and

multi-polygon.

REFERENCES

1. T. Johnson and D. Shasha - The performance of current B-tree algorithms, ACM

Transactions on Database Systems, 18(1):51-101, 1993.

2. T. Johnson and D. Shasha - Utilization of Btrees with inserts, deletes and modifies. In

Proceedings of the 8th Symposium on Principles of Database Systems, pages 235-246.

ACM, 1989.

3. Sai Wu, Dawei Jiang, Beng Chin Ooi and Kun-Lung Wu - Efficient B-tree Based Indexing

for Cloud Data Processing. In Proceedings of the VLDB Endowment 3 (1) (2010).

4. http://www.microimages.com/documentation/cplates/76BingStructure.pdf

5. M. de Berg, M. van Kreveld, M. Overmars and O. Cheong - Computational Geometry

Algorithms and Applications Third Edition, Springer, 2008.

Corresponding author:

Nam V. Nguyen,

Vietbando, HCMC, Vietnam.

Email: nguyenvinhnam@vietbando.vn

http://www.microimages.com/documentation/cplates/76BingStructure.pdf

