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BINDING ENERGY OF EXCITON IN QUANTUM DOTS
WITH THE CENTRAL-CELL CORRECTION

DEPENDING ON THE DOT SIZES

TO THI THAO AND NGUYEN AI VIET

Institute of Physics & Electronics, VAST

Abstract. The binding energy of exciton in quantum dots with a parabolic confinement
potential was calculated by variational methods beyond the Kohn-Luttinger effective mass
theory, when the central-cell correction was taken into account.We have assumed that a
short range potential with two parameters for strength and range for exciton, representing the
center-cell effect also depends on dot size. Our result is in good agreement with experiment.

I. INTRODUCTION

Semiconductor nano particles-quantum dots have been fabricated and extensively
investigated in both experimental and theoretical sides. The quantum dots are such small
structure as quasi zero-dimensional with strong confinement in all directions. The electrons
and holes in quantum dots are fully quantized in a discrete spectrum of energy levels. The
strong optical efficiency observed in quantum dots makes them promising candidates for
optolectronic and nano devices [1, 2].

One well known that the exciton play an important role in determining the optical
properties of system. The study of exciton states in quantum dots is a relevant aspect to
which many theoretical works have been devoted [3, 4, 5, 6, 7, 8, 9, 10].

The effective mass theory provides a simple theoretical model to calculate binding
energies of excitons in quantum dots [3, 4, 5]. According to this model, the exciton problem
is a hydrogen atom embedded in a diecletric medium with a mass renormalization (effective
mass) for the electron-hole pair. While the binding energy of exciton in big quantum dots
are described quite accurately, there are large deviation for the binding of small quantum
dots from those predicted by this effective mass theory. This Coulombic potential (e2/ε0)
assumed in the breakdown of concept of the static dielectric constant and a correction can
be effective by using proper screening function ε(r) approaching ε0 as r→ ∞.

Recently some authors [11, 12] have studied the central-cell corrections for donors in
semiconductors as analogy problem of excitons. Beyond the effective mass theory, instead
of the Coulombic potential they have assumed a short range potential with two parameters
for the strength and the range for donors, representing the central-cell effects. In this work,
using that idea we investigate the problem of excitons in small quantum dots.

Assuming the same two parameters model potential like in the central-cell correc-
tions problem, we will show that the binding energies of excitons increase with reducing
of the dot radius R.
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II. MODEL HAMILTONIAN

Let us consider the conduction band and valence band are spherical with effective
masses m∗

e and m∗
h for the electron and hole. The Hamiltonian for an exciton in spherical

quantum dots is defined as

Hx = Eg +
~p2
e

2m∗
e

+
~p2
h

2m∗
h

+ Vconf(~re, ~rh) + Uc(~re − ~rh), (1)

in which Eg is the band gap, Vconf(~re, ~rh) is the confinement potential for the electron
and hole, which can be calculated approximately by use a simple one-parameter parabolic
potential [4, 5]

Vconf(~re, ~rh) =
ω2

c

2
(m∗

er
2
e +m∗

hr
2
h). (2)

The parameter ωc will be chosen later by changing the radius of quantum dot in
Eq. (8).

The last term of equation (1) Uc(~re − ~rh) is the parameter effective potential repre-
senting the deviation from the effective mass theory, which is

Uc(~r) = −e
2

εr
[1 +

V0

R4/3
exp(− r

2

λ2
)], (3)

where ε is the static dielectric constant, R is dot radius, V0 and λ are parameters repre-
senting the strength and the range of the potential in the central-cell region, resp.

The crucial property of the parabolic potential is that the Hamiltonian (1) is sepa-
rable upon introducing the central-of-mass and relative transformations for the coordinate
and momentum [5,6]. The Hamiltonian of central-of-mass motion is identified to be the
well known oscillator one with the lowest energy level ERO=3

2~ωc. The Hamiltonian of
the relative motion equals

Hr =
p2

2µ
+ Vc(r) + Uc(r), (4)

where µ = m∗
em

∗
h/(m

∗
e + m∗

h) is the reduced mass of the electron-hole pair, ~r = ~re − ~rh,
and Vc(r) is confinement potential for the relative motion

Vc(r) =
1
2
µω2

c r
2. (5)

Choosing the exciton Rydberg energy ER = µe4/2~2ε2 as the unit of energy and ax = ε~2

µe2

as the unit of length, the Hamiltonian Hr in dimensionless form can be written as

H = 4 +
γ2

9
ξ2 − 2

ξ
(1 + ve−αξ2

), (6)

where ξ is the dimensionless variable; v, α, γ are the dimensionless parameters:

ξ =
r

ax
, α =

a2
x

λ2
, γ =

3~ωc

2ER
, v =

V0

R4/3
. (7)
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We will present our results in term of the unit of energy ER.

II.1. Binding energy of exciton without the correction

When the interaction between the electron and hole is omitted, we have a simple
relation between the parameter ωc and dot size R as

ωc =
~π2

3µ
1
R2
. (8)

In case of V0 = 0, the potential Uc in (3) approaches a simple screened Coulomb
potential. Using a trial function

ψ0(ξ) = N0e
− 1

4a0
ξ2

, (9)

where a0 is the variation parameter and N0 is the normalization constant. From (6) and
(9) we obtain

< H >0=
3

4a2
0

−
2
√

2
π

a0
+

1
3
a2

0γ
2. (10)

The variational parameter a0 can be obtained by demanding ∂ < H >0 /∂a0 = 0.
The dot sizes are changed by parameter γ (see (7) and (8)). Minimizing < H >0 with
respect to a0, the minimum exciton energy was found. Our result is presented in Fig. 1.
This result is similar to the one of other authors [1, 2, 3].
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Fig. 1. The dashed line is the spherical confinement potential model result [11], the
solid line is our result and the dots are experiment result[1].
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For comparison, we also plotted these values obtained by using the spherical con-
finement potential model [1, 2]

Eex =
~2π2

2R2

[
1
me

+
1
mh

]
− 1.786e2

εR
− 0.248ER, (11)

where me and mh are effective masses of electron and hole, R is radius of quantum dot, ε
is dielectric constant and ER is bulk exciton binding energy.

II.2. Binding energy of exciton with the correction

In this section, we study the contribution of the beyond effective mass theory cor-
rection V0. Using a trail wave function as in equation (9)

ψ0(ξ) = Ne−
1
4a

ξ2
, (12)

where a and N is the dimensionless variational parameter and normalization constant,
resp. The expectation value of Hamiltonian (6) becomes

< H >=
1

2(a2 + 2a4α)
[−24a

√
2
π

(1+v)+8a6γ2α+9(1+2a2α)+4a3(aγ2−12

√
2
π
α)], (13)

here v, α and γ and have the same meaning as in (7).
Similarly, the dot size can be changed by changing γ. In other words, the center-cell

effect can be described by changing the dot size R.
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Fig. 2. The dashed line and the solid line is the spherical confinement potential model
result [11] and our result, respectively. The dots are experimental result [1].

The minimum exciton energy, E − Eg, was found by minimizing the expectation
value successively with respect to a. In the unit of ER, the energy of exciton versus the
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parameter V0 and λ is presented in Fig. 2. Note that the correction enhances the binding
energy of exciton.

In summary, we study a present simple model for excitons, which are confined in
a quantum dot, when the deviations from effective mass theory was taken into account
by using a modified Coulomb potential like in [11]. The binding energy of exciton can
be calculated by using Eb = γ− < H >min, where < H >min is expressed in units of
the Rydberg energy ER. It is presented in Fig. 3. The central-cell correction enhances the
binding energy of exciton considerably.
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Fig. 3. The dashed line is the spherical confinement potential model result [11], the
solid line is our result.
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