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Abstract. Analytical expressions for the Morse potential parameters for fcc, bcc and hcp
crystals have been developed. They contain the energy of sublimation, the compressibility
and the lattice constant. Numerical results for Cu (fcc), W (bcc) and Zn (hcp) agree well
with the measured values. Debye-Waller factors in X-ray absorption fine structure (XAFS)
and equation of state computed using the obtained Morse potential parameters agree well
with the experimental results.

I. INTRODUCTION

Interatomic anharmonic potential, especially Morse potential, has been studied
widely [1-12]. The parameters of this potential can be extracted from the XAFS [11,
12]. They are also used to calculate thermodynamic parameters included in these spectra
[4-10]. This potential is successfully applied to calculating the quantities involving atomic
interaction, especially, the anharmonic effects contained in XAFS [5-10] which influence on
the physical information taken from these spectra. They are also contained in the expres-
sions of equation of state. Therefore, calculation of the Morse potential is very actually
desired, especially in XAFS theory.

The purpose of this work is to develop a method for calculating the Morse potential
parameters of fcc, bcc and hcp crystals. Analytical expressions for the parameters of this
potential have been derived. They contain the energy of sublimation, the compressibility
and the lattice constant which are known already, for example see [13, 21]. The obtained
results are applied to Debye-Waller factors contained in the XAFS spectra [4-10,14] and to
equation of state. Numerical calculations have been carried out for Cu (fcc), W (bcc) and
Zn (hcp). The calculated Morse potential parameters agree well with the measured values
[11, 12, 15] and with the other theory results [1]. Debye-Waller factors and equation of
state computed using the obtained Morse potential parameters are found to be in good
agreement with experiment [17, 18-21].

II. PROCEDURE FOR CALCULATION OF MORSE POTENTIAL

The potential energy ϕ (rij) of two atoms i and j separated by a distance rij is given
in terms of the Morse function by

ϕ (rij) = D
{
e−2α(rij−ro) − 2e−α(rij−ro)

}
, (1)
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where α, D are constants with dimensions of reciprocal distance and energy, respectively;
ro is the equilibrium distance of the two atoms. Since ϕ (ro) = −D, D is the disociation
energy.

In order to obtain the potential energy of the whole crystal whose atoms are at rest,
it is necessary to sum Eq. (1) over the entire crystal. This is most easily done by choosing
one atom in the lattice as an origin, calculating its interaction with all the others in the
crystal, and then multiplying by N/2, where N is the total atomic number in the crystal.
Thus the total energy Φ is given by

Φ =
1
2
ND

∑

j

{
e−2α(rj−ro) − 2e−α(rj−ro)

}
. (2)

Here rj is the distance from the origin to the jth atom. It is convenient to define the
following quantities

L =
1
2
ND ; β = eαro ; rj =

[
m2

j + n2
j + l2j

]1/2
a = Mja, (3)

where mj , nj , lj are position coordinates of any atom in the lattice. Using Eqs. (3) for
Eq. (2), the energy can be rewritten as

Φ (a) = Lβ2
∑

j

e−2αaMj − 2Lβ
∑

j

e−αaMj . (4)

The first and second derivatives of the enery of Eq. (4) with respect to a are given by

dΦ
da

= −2αLβ2
∑

j

Mje
−2αaMj + 2Lβα

∑

j

Mje
−αaMj , (5)

d2Φ
da2

= 4α2Lβ2
∑

j

M2
j e−2αaMj − 2α2Lβ

∑

j

M2
j e−αaMj . (6)

At absolute zero T = 0, ao is value of a for which the lattice is in equilibrium, then
Φ (ao) gives the energy of cohesion, [dΦ/da]a0

= 0, and
[
d2Φ/da2

]
a0

is related to the
compressibility [1]. That is,

Φ (a0) = U0 (a0) , (7)

where U0 (a0) is the energy of sublimation at zero pressure and temperature, i.e.,
(

dΦ
da

)

a0

= 0 , (8)

and the compressibility is given by [1]

1
K00

= V0

(
d2U0

dV 2

)

a0

= V0

(
d2Φ
dV 2

)

a0

, (9)
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where V0 is volume at T = 0, and K00 is compressibility at zero temperature and pressure.
The volume per atom N/V is related to the lattice constant a by

V/N = ca3. (10)

Substituting Eq. (10) in Eq. (9) the compressibility is expressed by

1
K00

=
1

9cNa0

(
d2Φ
da2

)

a=a0

. (11)

Using Eq. (5) to solve Eq. (8) we obtain

β =
∑

j

Mje
−αaMj/

∑

j

Mje
−2αaMj . (12)

From Eqs. (4), (6), (7) and (11) we derive the relation

β
∑
j

e−2αaMj − 2
∑
j

e−αaMj

4α2β
∑
j

M2
j e−2αaMj − 2α2

∑
j

M2
j e−αaMj

=
U0K00

9cNa0
. (13)

Solving the system of Eqs. (12), (13) we obtain α, β. Substituting the obtained
results into the second of Eqs. (3) we derive r0. Using the obtained α, β and Eq. (4)
to solve Eq. (7) we obtain L. From this L and the first of Eqs. (3) we obtain D. The
obtained Morse potential parameters D, α depend on the compressibility K00, the energy
of sublimation U0 and the lattice constant a. These values of about all crystals are known
already [13].

III. APPLICATION TO CALCULATION OF PHYSICAL QUANTITIES

1. Debye-Waller factors in XAFS theory

The expression for the K-edge XAFS function [10]

χ(k, T ) ∼ e−2kσ2(T ) (14)

is proportional to the Debye-Waller factor e−2k2σ2
defined by the mean square relative

displacement (MSRD) σ2 in temperature T dependence, k is wave number of the photo-
electron. The expression for the MSRD in XAFS theory is derived based on the correlated
Einstein model [9] which is considered, at present, as “the best theoretical framework with
which the experimentalist can relate force constants to temperature dependent XAFS”
[15]. According to this theory the effective interaction Einstein potential of the system is
given by

Veff (x) ∼=
1
2
keffx2 + k3x

3 + · · · = V (x) +
∑

j 6=i

V

(
µ

Mi
xR̂12.R̂ij

)
,

µ =
M1M2

M1 + M2
, R̂ =

R
|R| .

(15)
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Here keff is effective spring constant, and k3 the cubic parameter giving an asymmetry
in the pair distribution function. The correlated Einstein model may be defined as a
oscillation of a pair of atoms with masses M1 and M2 (e.g., absorber and back-scatterer)
in a given system. Their oscillation is influenced by their neighbors given by the last term
in the left-hand side of Eq. (15), where the sum i is over absorber (i = 1) and back-
scatterer (i = 2), and the sum j is over all their near neighbors, excluding the absorber
and back-scatterer themselves. The latter contributions are described by the term V (x).

Using the Morse potential of Eq. (1) in the approximation for weak anharmonicity
in the XAFS theory by the expansion

V (x) = D
(
e−2αx − 2e−αx

) ∼= D
(
−1 + α2x2 − α3x3 + · · ·

)
, (16)

to the effective potential of the system of Eq. (15) (ignoring the overall constant for
convenience) we obtain

keff = Dα2

(
S − 15

2
αa

)
= µ ω2

E ; k3 = −5
4
Dα3 ; θE =

~ωE

kB
, (17)

where x is the deviation of instantaneous bond length between the two atoms from equi-
librium, α , D were defined above; kB is the Boltzmann constant; ωE ,θE are the Einstein
frequency and Einstein temperature; a describes the asymmetry of the potential due to
anharmonicity.

Using the definition [9] y = x − a as the deviation from the equilibrium value of x

at temperature T and quantum statistical theory [24] the MSRD is described by

σ2 =
1
Z

Tr
(
ρ y2

)
=

1
Z

∑

n

e−n~ωE 〈n|y2 |n〉 =
~ωE (1 + z)
2keff (1 − z)

, z = e−θE /T , (18)

where we express y in terms of anihilation and creation operators, â and _
a

+
, i. e.,

y = κ
(
â + â+

)
; κ2 =

~
2µωE

(19)

and use harmonic oscillator state |n〉 with eigenvalue En = n~ωE (ignoring the zero point
energy for convenience).

Therefore the expression for the MSRD is resulted as

σ2 (T ) = σ2
o

1 + z

1− z
, σ2

o =
~ωE

2SDα2
, (20)

where σ2
o is the zero-point contributions to σ2.

In the derivation of the above expressions we have developed a structural parameter

S = 2 +
N∑

j=2

(
R̂01.R̂0j

)2
; R̂ = R/ |R| , (21)
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where N is atomic number of the first shell, R01 is directed from absorber located at point
0 to the location of the first scatterer at j = 1, and Roj are from absorber to the other
scatterers. This parameter descibes the distribution of atoms in the crystal.

2. Equation of state

It is possible to calculate the equation of state from the energy Φ. If it is assumed
that the thermal part of the free energy can be adequately represented by the Debye
model, then the Helmholtz free energy is given by [1]

F = Φ + 3NkBT ln
(
1 − e−θD/T

)
− NkBTD (θD/T) , (22)

D

(
θD

T

)
= 3

(
T

θD

)3
θD/T∫

0

x3

ex − 1
dx, (23)

where θD is Debye temperature, the remaining parameters were defined above.
Using Eqs. (22, 23) we derive the expression for presure P leading to the equation

of state as

P = −
(

∂F

∂V

)

T

=
1

3ca2

dΦ
da

+
3γGRT

V
D

(
θD

T

)
, (24)

where γG is Grüneisen parameter, V is the volume.
After some transformations the equation of state (24) is resulted as

P = 1

3ca2
0(1−x)2/3

[
2Lβα

∑
j

Mje
−αa0Mj(1−x)1/3

]
−

−2Lβ2α
∑
j

Mje
−2αa0Mj(1−x)1/3

+ 3γGRT
V0(1−x)D

(
θD
T

) (25)

where x = V0−V
V0

, V0 = ca3
0 , R = NkB , N = 6.02 × 1023. (26) Hence, the equation of

state (25) contains the obtained Morse potential parameters.

IV. NUMERICAL RESULTS AND COMPARISON TO EXPERIMENT

Now we apply the above derived expressions to numerical calculations for some fcc, bcc
and hcp crystals. Considering the distribution of atoms in the crystals and volume per
atom we calculated the values of c in Eq. (10) and structural parameter S according to
Eq. (21) for these crystal structures, the results are given in Table 1. Hence, for fcc Eq.
(20) becomes Eq. (9) in Ref. [10].
Table 1. Calculated values of c ( Eq.10) and structural parameters S for fcc, bcc, hcp
crystals.

Crystal structure fcc bcc hcp

Value of c 2 4 1/
√

2
Structural parameter S 5 11/3 5
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Table 2. Calculated Morse potential parameters for Cu (fcc), W (bcc), Zn (hcp) in
comparison to experiment and to other theory

Crystal D(eV) α(Å−1) ro(Å)
Cu (present) 0.337 1.358 2.868
Cu (other [1]) 0.343 1.359 2.866
Cu (Expt. [11]) 0.330 1.380 2.802
W (present) 0.992 1.385 3.035
W (other [1]) 0.991 1.412 3.032
W (Expt. [12]) 0.990 1.440 3.092
Zn (present) 0.170 1.705 2.793
Zn (Expt. [21]) 1.700

a) b)

Fig. 1. Morse potentials calculated by present procedure in comparison to experiment
(dashed) for Cu (a) and for W (b)

Using the energy of sublimation, the comppressibility and the lattice constants [13,
21, 22] we calculated the Morse potential parameters for Cu (fcc), W (bcc) and Zn (hcp).
The results are presented in Table 2 in comparison to those of other theory [1] and of
experiment [11, 12]. The accuracy of our results compared to experiment is about 2% for
D; 1.6% for α of Cu; 0.2% for D, 3.8% for α of W and 0.3% for α of Zn. They also agree
well with those for Cu and W of the other theory [1].

Comparison of our calculated Morse potential to experiment is illustrated in Fig. 1a
for Cu and Fig. 1b for W . The temperature dependent MSRD calculated by using our
above calculated Morse potential parameters are compared to the ones measured at HA-
SYLAB, DESY (Germany) for Cu [17, 19] (Fig. 2a) and for Zn [20] (Fig. 2b) providing
very good agreement.
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a) b)

Fig. 2. Temperature dependence MSRD σ2(T ) calculated by using our calculated
Morse potential parameters in comparison to experiment [17,19] for Cu (a) and [20]
for Zn (b).

Fig. 3. Equation of state for Zn calculated by using
our calculated Morse potential parameters (solid line) in
comparison to experimental results [21] (dashed line).

The next application of our
calculated Morse potential param-
eters is to the calculation of the
equation of state for Zn. The
values of θD and D (θD/T ) were
taken from [23]. The calculated
results are shown in Fig. 3 in com-
parison to the experimental val-
ues [21] represented by an extrap-
olation procedure of the measured
data. They show a good agree-
ment between theoretical and ex-
perimental results, especially at
low pressure.

V. CONCLUSIONS

A new procedure for calculation of Morse potential parameters for fcc, bcc and hcp
crystals has been developed and the obtained results are applied to calculation of Debye-
Waller factors in the XAFS theory and to the equation of state. The derived expressions
have been programed for the computation of the considered physical quantities.

The calculated Debye-Waller factor and equation of state satisfy all standard condi-
tions for the considered quantities such as Debye-Waller factors are linearly proportional to
temperature at high temperature and contain zero-point contribution at low temperature.
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Resonable agreement of our results with the respective experimental and other the-
ory values show the efficiency and reliability of the present procedure in computation of the
atomic interaction potential parameters as the Morse potential which are important for
calculation and analysis of physical effects in XAFS technique and in solving the problems
involving any type of atomic interaction in the fcc, bcc and hcp crystals.
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