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Abstract. We have investigated the thermodynamic properties of the cubic zirconia ZrO2

using the statistical moment method in the statistical physics. The free energy, thermal
lattice expansion coefficient, specific heats at the constant volume and those at the constant
pressure, CV and CP , are derived in closed analytic forms in terms of the power moments of
the atomic displacements. The present analytical formulas including the anharmonic effects
of the lattice vibrations give the accurate values of the thermodynamic quantities, which are
comparable to those of the ab initio calculations and experimental values. The calculated
results are in agreement with experimental findings. The thermodynamic quantities of the
cubic zirconia are predicted using two different inter-atomic potential models. The influence
of dipole polarization effects on the thermodynamic properties for cubic zirconia have been
studied.

1. INTRODUCTION

Zirconia (ZrO2) with a fluorite crystal structure is a typical oxygen ion conductor.
In order to understand the ionic conduction in ZrO2, careful should be to study the
local behavior of oxygen ions close to the vacancy and the thermodynamic properties of
zirconia. ZrO2 is an important industrial ceramic combining high temperature stability
and high strength [1]. Zirconia is also interesting as a structural material: It can form
cubic, tetragonal and monoclinic or orthorhombic phases at high pressure. Pure zirconia
undergoes two crystallographic transformations between room temperature and its melting
point: monoclinic to tetragonal at T ≈ 1443 K and tetragonal to cubic at T ∼ 2570 K. The
wide range of applications (for use as an oxygen sensor, technical application and basic
research), particularly those at hightemperature, makes the derivation of an atomistic
model especially important because experimental measurements of material properties at
high temperatures are difficult to perform and are susceptible to errors caused by the
extreme environment [2]. In order to understand properties of zirconia and predict them
there is a need for atomic scale simulation. Molecular dynamics (MD) has recently been
applied to the study of oxide ion diffusion in zirconia systems [3-5] and the effect of
grain boundaries on the oxide ion conductivity of zirconia ceramic [6]. Such a model of
atomic scale simulation should be required a reliable model for the energy and interatomic
forces. First principles, or ab initio calculations give the most reliable information about
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properties, but they are only possible for very simple structures involving a few atoms per
unit cell. More ab initio data are available concentrate on zero K structure information
while experimental information is available at high temperatures (for example in the case of
zirconia, > 1200◦C [7]). In this respect, therefore, the ab initio and experimental data can
be considered as complementary. Recently, it has been widely recognized that the thermal
lattice vibrations play an important role in determining the properties of materials. It
is of great importance to take into account the anharmonic effects of lattice vibrations
in the computations of the thermodynamic quantities of zirconia. So far, most of the
theoretical calculations of thermodynamic quantities of zirconia have been done on the
basis of harmonic or quasi- harmonic (QH) theories of lattice vibrations, and anharmonic
effects have been neglected.

The purpose of the present study is to apply the statistical moment method (SMM)
in the quantum statistical mechanics to calculate the thermodynamic properties and
Debye-Waller factor of the cubic zirconia within the fourth-order moment approxima-
tion. The thermodynamic quantities as the free energy, specific heats CV ans CP , bulk
modulus, are calculated taking into account the anharmonic effects of the lattice vibra-
tions. We compared the calculated results with the previous theoretical calculations as
well as the experimental results. In the present study, the influence of dipole polarization
effects on the thermodynamic properties have been studied. We compared the dependence
of the results on the choice of interatomic potential models.

2. CALCULATING METHOD

2.1. Anharmonicity of lattice vibrations

First, we derive the expression of the displacement of an atom Zr or O in zirconia,
using the moment method in statistical dynamics.

The basic equations for obtaining thermodynamic quantities of the crystalline ma-
terials are derived in the following manner. We consider a quantum system, which is
influenced by supplemental forces ai in the space of the generalized coordinates Qi. The
Hamiltonian of the lattice system is given as

H = H0 −
∑

i

aiQi (1)

where H0 denotes the Hamiltonian of the crystal without forces ai. After the action of the
suplemental forces ai, the system passes into a new equilibrium state. From the statistical
average of a thermodynamic quantity 〈Qk〉, we obtain the exact formula for the correlation.
Specifically, we use a recurrence formula [8-10]

〈Kn+1〉a = 〈Kn〉a 〈Qn+1〉a + θ
∂ 〈Kn〉a
∂an+1

− θ

∞∑

m−0

B2m

(2m)!

(
i~
θ

)2m
〈
∂K

(2m)
n

∂an+1

〉

a

(2)

where θ = kBT and Kn is the correlation operator of the n-th order

Kn =
1

2n−1
[. . . [Q1, Q2]+Q3]+ . . . ]+Qn]+ (3)
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In Eq. (2), the symbol 〈...〉a expresses the thermal averaging over the equilibrium
ensemble, H represents the Hamiltonian, and B2m denotes the Bernunlli numbers.

The general formula (Eq. (2)) enables us to get all of the moments of the system
and to investigate the nonlinear thermodynamic properties of the materials, taking into
account the anharmonicity effects of the thermal lattice vibration. In the present study,
we apply this formula to find the Helmholtz free energy of zirconia (ZrO2).

First, we assume that the potential energy of the system zirconia composed of N1

atoms Zr and N2 atoms O can be written as

U =
N1

2

∑

i

ϕZr
io (|ri + ui|) +

N2

2

∑

i

ϕO
io(|ri + ui|)

≡ CZrU
Zr
0 + COU

O
0

(4)

where UZr
0 , UO

0 represent the sum of effective pair interaction energies between the zero-th
Zr and i-th atoms, and the zero-th O and i-th atoms in zirconia, respectively. In the Eq.
(4), ri is the equilibrium position of the i-th atom, ui its displacement, and ϕZr

io , ϕO
io, the

effective interaction energies between the zero-th Zr and i-th atoms, and the zero-th O
and i-th atoms, respectively. We consider the zirconia ZrO2 with two concentrations of
Zr and O (denoted by CZr = N1

N , CO = N2
N , respectively).

First of all let us consider the displacement of atoms Zr in zirconia. In the fourth-
order approximation of the atomic displacements, the potential energy between the zero-th
Zr and i-th atoms of the system is written as

ϕZr
io (|ri + ui|) = ϕZr

io (|ri|) +
1
2

∑

α,β

(
∂2ϕZr

io

∂uiα∂uiβ

)

eq

uiαuiβ

+
1
6

∑

α,β,γ

(
∂3ϕZr

io

∂uiα∂uiβ∂uiγ

)

eq

uiαuiβuiγ

+
1
24

∑

α,β,γ,η

(
∂4ϕZr

io

∂uiα∂uiβ∂uiγ∂uiη

)

eq

uiαuiβuiγuiη + ...

(5)

In Eq. (5), the subscript eq means the quantities calculated at the equilibrium state.
The atomic force acting on a central zero-th atom Zr can be evaluated by taking

derivatives of the interactomic potentials. If the zero-th central atom Zr in the lattice is
affected by a supplementary force aβ, then the total force acting on it must be zero, and
one can obtain the relation

1
2

∑

i,α

(
∂2ϕZr

io

∂uiα∂uiβ

)

eq

< uiα >+
1
4

∑

i,α,γ

(
∂3ϕZr

io

∂uiα∂uiβ∂uiγ

)

eq

< uiαuiγ >

+
1
12

∑

i,α,γ,η

(
∂4ϕZr

io

∂uiα∂uiβ∂uiγ∂uiη

)

eq

< uiαuiγuiη > −aβ = 0
(6)

The thermal averages on the atomic displacements ( called second- and third-order
moments) < uiαuiγ > and ) < uiαuiγuiη > can be expressed in terms of < uiα > with the
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aid of Eq. (2). Thus, Eq. (6) is transformed into the form

γθ2
d2y

da2
+ 3γθy

dy

da
+ γy3 + ky + γ

θ

k
(x cothx− 1)y − a = 0 (7)

with β 6= γ = x, y, z. and y ≡< ui >

where

k =
1
2

∑

i

(
∂2ϕZr

io

∂u2
iα

)

eq

≡ m∗ω2
Zr and x =

~ωZr

2θ
(8)

γ =
1
12
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

(
∂4ϕZr
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∂u4
iα

)

eq

+ 6

(
∂4ϕZr
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2
iγ

)

eq


 (9)

In deriving Eq. (7), we have assumed the symmetry property for the atomic dis-
placements in the cubic lattice:

< uiα >=< uiγ >=< uiη >≡< ui > (10)

Equation (7) has the form of a nonlinear differential equation, and , since the ex-
ternal force a is arbitrary and small, one can find the approximate solution in the form

y = y0 +A1a+ A2a
2 (11)

Here, y0 is the displacement in the case of absence of external force a. Hence, one can get
the solution of y0 as

y2
0 ≈ 2γθ2

3k3
A (12)

In an analogical way as for finding Eq. (7), for the atoms O in zirconia ZrO2,
equation for the displacement of a central zero-th atom O has the form

γθ2
d2y

da2
+ 3γθy

dy

da
+ ky + γ

θ

k
(x cothx− 1)y + βθ

dy

da
+ βy2 − a = 0 (13)

with 〈ui〉a ≡ y ; x = ~ωO
2θ

k =
1
2

∑

i
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eq
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and

β =
1
2

∑

i

(
∂3ϕO

io

∂uiα∂uiβ∂uiγ
)eq (16)

Hence, one can get the solution of y0 of the atom O in zirconia as

y0 ≈
√

2γθ2

3K3
A − β

3γ
+

1
K

(1 +
6γ2θ2

K4
)[

1
3

+
γθ

3k2
(x cothx− 1) − 2β2

27γk
] (17)

where the parameter K has the form

K = k − β2

3γ
(18)
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2.2. Helmholtz free energy of zirconia

We consider the zirconia ZrO2 with two concentrations of Zr and O (denoted by
CZr = N1

N , CO = N2
N , respectively). The atomic mass of zirconia is simply assumed to be

the average atoms of m∗ = CZrmZr +COmO. The free energy of zirconia is then obtained
by taking into account the configurational entropies Sc, via the Boltzmann relation, and
written as

ψ = CZrψZr + COψO − TSc (19)

where ψZr and ψO denote the free energy of atoms Zr and O in zirconia, respectively.
Once the thermal expansion y0 of atoms Zr or O in the lattice zirconia is found, one can
get the Helmholtz free energy of system in the following form:

ψZr = UZr
0 + ψZr

0 + ψZr
1 (20)

where ψZr
0 denotes the free energy in the harmonic approximation and ψZr

1 the anhar-
monicity contribution to the free energy [11-13]. We calculate the anharmonicity contri-
bution to the free energy ψZr

1 by applying the general formula

ψZr = UZr
0 + ψZr

0 +

λ∫

0

< V̂ >λdλ (21)

where λV̂ represents the Hamiltonian corresponding to the anharmonicity contribution.
It is straightforward to evaluate the following integrals analytically

I1 =

γ1∫

0

< u4
i > dγ1, I2 =

γ2∫

0

< u2
i >

2
γ1=0 dγ2 (22)

Then the free energy of the system is given by

ΨZr ≈
{
UZr

0 + 3Nθ[x+ ln(1 − e−2x)]
}

+
3Nθ2

k2

{
γ2x

2 coth2 x− 2γ1

3

(
1 +

x cothx
2

)}

+
3Nθ3

k4

{
4
3
γ2

2x cothx(1 +
x cothx

2
)− 2(γ2

1 + 2γ1γ2)(1 +
x cothx

2
)(1 + x cothx)

}

(23)

where UZr
0 represents the sum of effective pair interaction energies between zero-th Zr and

i-th atoms, the first term of Eq. (23) given the harmonicity contribution of thermal lattice
vibrations and the other terms in the above Eq. (23) given the anharmonicity contribution
of thermal lattice vibrations and the fourth-order vibrational constants γ1, γ2 defined by

γ1 =
1
48

∑

i

(
∂4ϕZr

io

∂u4
iα

)

eq

, γ2 =
6
48

∑

i

(
∂4ϕZr

io

∂u2
iα∂u

2
iβ

)

eq

(24)

In an analogical way as for finding Eq. (23), the free energy of atoms O in the
zirconia ZrO2 is given as
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ΨO ≈
{
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}
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2
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β2k
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] + 3N2θ

2[
β

K
(

2γ
3K3

a1)1/2 − β2a1

9K3
+
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9K4
+
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6K2k
(x cothx− 1)].

(25)

Note that the parameters γ1, γ2 in the above Eq. (25) have the form analogous to
(24), but ϕO

io, the effective interaction energies between the zero-th O and i-th atoms,
respectively.

With the aid of the free energy formula ψ = E−TS, one can find the thermodynamic
quantities of zirconia. The specific heats at constant volume CZr

V , CO
V are directly derived

from the free energy of the system ψZr, ψO (23), (25), respectively, and then the specific
heat at constant volume of the cubic zirconia is given as

CV = CZrC
Zr
V + COC

O
V (26)

We assume that the average nearest-neighbor distance of the cubic zirconia at tem-
perature T can be written as

r1(T ) = r1(0) + CZry
Zr
0 + COy

O
0 (27)

in which yZr
0 (T) and yO

0 (T )are the atomic displacements of Zr and O atoms from the
equlibrium position in the fluorite lattice, and r1(0) is the distance r1 at zero temperature.
In the above Eq. (27), yZr

0 and yO
0 are determined from Eqs. (12) and (17), respectively.

The average nearest-neighbor distance at T = 0 K can be determined from experiment
or the minimum condition of the potential energy of the system of the cubic zirconia
composed of N1 atoms Zr and N2 atoms O

∂U

∂r1
=
∂UZr

0

∂r1
+
∂UO

0

∂r1

=
N1

2
∂

∂r1

(∑

i

ϕZr
io (|ri|)

)
+
N2

2
∂

∂r1

(∑

i

ϕO
io(|ri|)

)
= 0.

(28)

From the definition of the linear thermal expansion coefficient, it is easy to derive
the result

αT = CCeα
Ce
T + COα

O
T , (29)

where

αZr
T =

kB

r1(0)
∂yZr

0

∂θ
, αO

T =
kB

r1(0)
∂yO

0

∂θ
(30)
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The bulk modulus of the cubic zirconia is derived from the free energy of Eq. (19)
as

BT = −V0

(
∂P

∂V

)

T

= −V0

(
∂2Ψ
∂V 2

)

T

= CZrB
Zr
T + COB

O
T

(31)

where P denotes the pressure, V0 is the lattice volume of the cubic zirconia crystal at zero
temperature, and the bulk moduli BCe

T and BO
T are given by

BZr
T = − kB

3αZr
T

(
∂2ΨZr

∂V ∂θ

)
, BO

T = − kB

3αO
T

(
∂2ΨO

∂V ∂θ

)
(32)

Due to the anharmonicity, the heat capacity at constant pressure, CP , is different
from the heat capacity at constant volume, CV . The relation between CP and CV of the
cubic zirconia is

CP = CV − T

(
∂V

∂T

)2

P

(
∂P

∂V

)

T

= CV + 9α2
TBTV T. (33)

3. RESULTS AND DISCUSSIONS

3.1. Potential dependence of thermodynamic quantities

With the use of the moment method in the statistical dynamics, we calculated the
thermodynamic properties of zirconia with the cubic fluorite structure. In discussing the
thermodynamic properties of zirconia, the Buckingham potential has been very successful.
The atomic interactions are described by a potential function which divides the forces
into long-range interactions (described by Coulomb’s Law and summated by the Ewald
method) and short-range interactions treated by a pairwise function of the Buckingham
form

ϕij(r) =
qiqj
r

+Aij exp(− r

Bij
)− Cij

r6
, (34)

where qi and qj are the charges of ions i and j respectively, r is thedistance between them
and Aij , Bij and Cij are the parameters particular to each ion-ion interaction. In the
Eq. (34), the exponential term corresponds to the electron cloud overlap and the Cij/r

6

term any attractive dispersion or Van der Waal’s force. Potential parameters Aij , Bij

and Cij have most commonly been derived by the procedure of ‘empirical fitting’, i.e.,
parameters are adjusted, usually by a least-squares fitting routine, so as to achieve the
best possible agreement between calculated and experimental crystal properties. The
potential parameters used in the present study were taken from Lewis and Catlow [14]
and from Ref. [29].

The potential parameters are listed in Tables 1 and 2 compares the zero K lattice
parameter predicted by ab initio calculations with previous calculations and two experi-
mental values. The experimental values are derived from the high temperature neutron
scattering data [7] and to zero impurity in the cubic stabilized structure [19]. We summa-
rized here the results of different ab initio calculations and compare them to experimental
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Table 1. Short range potential parameters

Interaction A/eV B/Å C/eVÅ6

O2− −O2− 9547.92 0.2192 32.00 potential 1
Zr4+ −O2− 1453.8 0.35 25.183
Zr4+ − Zr4+ 9.274
O2− −O2− 1500 0.149 27.88 potential 2
Zr4+ −O2− 1453.8 0.35 25.183
Zr4+ − Zr4+ 9.274

Table 2. Ab initio 0 K flourite lattice parameters of zirconia compared with
present results and experimental values.

Method a0(Å) V(AA3) Ref.
CLUSTER 4.90 30.14 15
CRYSTAL 5.154 34.23 15
FLAPW-DFT 5.03 32.27 16
Hartree-Fock 5.035 31.91 17
Potential-induced
breathing

5.101 33.19 18

LMTO 5.04 32.90 2
RIP 5.162 34.39 2
PWP-DFT 5.134 33.83 22
SMM (0 K) 5.0615 32.417 current work
SMM (2600 K) 5.2223 35.606 current work
Expt. 5.090 32.97 7
Expt. 5.127 33.69 19

ones. It is noted that the ab initio calculations of lattice paramerters at zero K, but present
results by SMM at temperatures T = 0 K and T = 2600 K, while experimental values
at high temperatures (> 1500K) [7]. The full-potential linearized augmented-plane-wave
(FLAPW) ab initio calculation of Jansen [16], based on the density functional theory
in the local-density approximation (LDA), give a0(A0)= 5.03, while Hartre-Fock calcula-
tions (the CRYSTAL code) give a0(A0)= 5.035 (both at zero K). The linear muffin-tin
orbital (LMTO) ab initio calculations of lattice parameters are larger than both exper-
imental values and are in best agreement with the Hartree-Fock calculation [17]. The
potential-induced breathing model [18] (PIB) augments the effective pair potential (EPP)
by allowing for the spherical relaxation (‘’breathing”) of the oxide anion charge density,
calculated by using a Watson sphere method, give a0(Å)= 5.101 (at T = 0 K). The density
functional theory (DFT) within the plane-wave pseudopotential (PWP) [22] and RIP give
a0(Å) = 5.134, and a0 (Å) = 5.162. These results and the CRYSTAL calculation [15]
are larger than the experimental values. Our SMM calculations give a lattice parameter
a =5.0615(Å) and unit cell volume V(Å3) = 32.417 at zero temperature and are in best
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agreement with the experimental values [7] and FLAPW-DFT, LMTO and Hartree-Fock
calculations.

Table 3 lists the thermodynamic quantities of the cubic fluorite zirconia calculated
by the present SMM using potential 1. The experimental nearest-neighbor anion-anion
separations rO−O

2 lie in the range 2.581−2.985Å[21], while the current SMM give 2.5931 Å
(without dipole polarization effects) and 2.6031Å (with dipole polarization effects) at T =
2600 K, and are in best agreement with the ab initio calculations [2]. These calculations [2]
used a potential fitted to ab initio calculations using the oxide anion electron the density
appropriate to the equilibrium lattice parameter give 2.581 Å as the fluorite analog for all
nearest-neighbor pairs. The nearest-neighbor cation-anion separations rZr−O

1 calculated by
SMM lie in the range 2.2543-2.2669Å (with dipole polarization effects) and 2.2457÷2.2557
Å(without dipole polarization effects) corresponding to the temperature range T = 2600÷
3000 K and being in best agreement with the first-principles calculations give 2.236 Å
in cubic zirconia [23]. We also calculated the bulk modulus BT of the cubic zirconia as
function of the temperature T. We have found that the bulk modulus BT depends strongly
on the temperature and is a decreasing function of T. The decrease of BT with increasing
temperature arises from the thermal lattice expansion and the effects of the vibration
entropy. At zero temperature, the EPP (EPP- OO) in which the O2− − O2− short-range
term is neglected, gives the bulk modulus BT = 201(GPa), and the CIM calculations of
the short-range anion-cation interactions with and without full dipolar and quadruppolar
polarization effects, give the bulk modulus BT = 204(GPa) [2], while the experimental
results of the bulk modulus BT = 194(GPa) [20]. The two bulk modulus calculated
by CIM (no polarization and full polarization) for the fluorite structure are equal and
greater than the experimental values while the SMM results of the bulk modulus at high
temperature (T = 2600 K) are smaller than the experimental ones. At lower temperatures
the SMM calculations of the bulk modulus give a much better agreement with experiment,
because the bulk modulus are the decreasing functions of the temperature. Above about
2570 K (up to the melting point at 2980 K), the zirconia is assumed to have the cubic
fluorite structure. In this phase the thermodynamic quantities as the lattice parameter, a,
specific heats at constant volume and pressure, CV , CP , and the bulk modulus, BT ,... are
calculated by the present SMM using potentials 1 and 2. Table 4 lists the thermodynamic
quantities of the cubic fluorite zirconia calculated by the present SMM using potential 2.
Tables 3 and 4 show the thermodynamic quantities, a, CV , CP and BT , for the cubic phase
of the bulk zirconia as functions of the temperature T . The variations in temperature of
the specific heats at constant volume and pressure CV , CP , reported in Fig. 1, show that
the specific heat CV depends slightly on the temperature, but the specific heat CP depends
strongly on T . Similarly, Figs. 2 and 3, and Tables 3 and 4 show that the linear thermal
expansion coefficient, α, and the bulk modulus, BT , depend strongly on the temperature.
The linear thermal expansion coefficient α determined experimentally by Terreblanche
[24], i. e. α = 10.5 × 10−6K−1, a value which is practically independent of the yttria
content and also close to the thermal expansion coefficient of the tetragonal phase [25].
This experimental value is also close to the value calculated in the present study using
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potential 1 for the cubic phase of bulk zirconia at the temperature T = 2600 K. For the
specific heat capacity CP of the cubic zirconia, the reference data reported by Chase [26]
give CP ∼ 640 J/(kg.K) at T ∼ 1400 K, while the current SMM using potential 1 gives
CP = 9.4316 cal/(mol.K) (with dipole polarization effects) and CP = 8.8674) cal/(mol.K)
(without dipole polarization effects) at T = 2600 K. The lattice specific heats CV and
CP at constant volume and at constant pressure are calculated using Eqs. (26) and (33),
respectively. However, the evaluations by Eqs. (26) and (33) are the lattice contributions,
and we do not include the contributions of lattice vacancies and electronic parts of the
specific heats CV . The calculated values of the lattice specific heats CV and CP by the
present SMM may not be directly compared with the corresponding experimental values
for high temperature region (from T = 2600 K to the melting temperature), but the
temperature dependence (curvature) of CP for the cubic phase of the bulk zirconia is in
agreement with the experimental results.
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Fig. 1. Temperature dependence of specific heats Cv and Cp ( in cal/ mol.K) for
zirconia: using potential 1 ; b) using potential 2
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10−6K−1) for the cubic zirconia
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Table 3. Calculated thermodynamic quantities of the cubic zirconia using poten-
tial 1

T (K) 2600 2700 2800 2900 3000

rZr−O
1 (Å) +with dipole 2.2543 2.2572 2.2603 2.2636 2.2669

+without dipole 2.2457 2.2481 2.2506 2.2531 2.2557

rO−O
2 (Å) +with dipole 2.6031 2.6065 2.6101 2.6138 2.6177

+without dipole 2.5931 2.5959 2.5987 2.6016 2.6047

a(Å) +with dipole 5.2061 5.2130 5.2201 5.2276 5.2353
+without dipole 5.1863 5.1918 5.1975 5.2033 5.2093

α(10−6K−1) +with dipole 15.135 15.559 16.017 16.535 17.121
+without dipole 12.948 13.230 13.527 13.854 14.215

CV (cal/mol.K) + with dipole 5.4374 5.4390 5.4405 5.4421 5.4436
+without dipole 5.5353 5.5407 5.5461 5.5515 5.5568

CP (cal/mol.K) +with dipole 9.4316 9.7435 10.0836 10.4669 10.8915
+without dipole 8.8673 9.0985 9.3440 9.6106 9.9026

BT (GPa) +with dipole 146.136 142.938 139.723 136.402 132.975
+without dipole 168.498 165.410 162.335 159.179 155.932

V (Ao3) +with dipole 35.2759 35.4163 35.5612 35.7147 35.8728
+without dipole 34.8742 34.9856 35.1003 35.2185 35.3409

Fig. 4 shows the lattice parameter, a, for cubic zirconia is calculated by the present
SMM using potentials 1 and 2 as functions of the temperature T. The difference between
the SMM calculated results using potentials 1 and 2 for the lattice parameter is very
small. This difference is related to the effect of the oxygen-oxygen interactions, since the
Coulombic contribution and the zirconium-oxygen potential are the same for the SMM
calculations using potentials 1 and 2. Fig. 4 shows that potential 1 gives a low theoretical
value for the lattice parameter. The values of the lattice parameters calculated by two
potentials are very slightly different, i. e. the choice of potential has very little effect upon
the lattice parameter, but it does play a important role in determining the bulk modulus
and the thermal expansion coefficient. Tables 3 and 4 and Figs. 2 and 3 show the bulk
modulus, BT , and the linear thermal expansion coefficient, α, of the cubic zirconia depends
strongly both on the temperature and the potential sets. Potential 1 gives the highest
values for the bulk modulus, BT , and the lowest values for the linear thermal expansion
coefficient, α, while the potential 2 gives the lowest values for BT , and the highest values
for α. Potential 2 gives the lower bulk modulus and higher thermal expansion coefficient
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Table 4. Calculated thermodynamic quantities of the cubic zirconia using poten-
tial 2

T (K) 2600 2700 2800 2900 3000

rZr−O
1 (Å) +with dipole 2.2794 2.2859 2.2931 2.3143 2.3350

+without dipole 2.2613 2.2655 2.2699 2.2749 2.2803

rO−O
2 (Å) +with dipole 2.6321 2.6395 2.6479 2.6571 2.6675

+without dipole 2.6112 2.6160 2.6212 2.6269 2.6331

a(Å) +with dipole 5.2642 5.2791 5.2957 5.3143 5.3350
+without dipole 5.2223 5.2319 5.2423 5.2537 5.2662

α(10−6K−1) +with dipole 27.767 30.171 32.916 36.070 39.659
+without dipole 20.253 21.458 22.832 24.426 26.262

CV (cal/mol.K) +with dipole 5.4147 5.4153 5.4160 5.4166 5.4172
+without dipole 5.5658 5.5723 5.5788 5.5853 5.5918

CP (cal/mol.K) +with dipole 15.6333 17.6243 20.1202 23.2843 27.2901
+without dipole 11.9906 12.8899 13.9706 15.2774 16.9262

BT (GPa) +with dipole 107.447 103.821 100.348 97.019 93.871
+without dipole 130.059 126.382 122.705 119.004 115.331

V (Ao3) +with dipole 36.4691 36.7806 37.1293 37.5205 37.9606
+without dipole 35.6062 35.8029 36.0168 36.1833 36.5117
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Fig. 3. Temperature dependence of the bulk modulus (in GPa) for the cubic zirconia

than the potential 1, since potential 2 is based on a different oxygen-oxygen potential. It
would be reasonable to conclude that the low bulk modulus and high thermal expansion
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Fig. 4. Temperature dependence of the lattice paramater (in Å) for the cubic zirconia

coefficient predicted by potential 2 are due to the effect of the oxygen-oxygen interactions.
Fig. 1 and Tables 3 and 4 show also that the deference between the SMM calculated results
using potentials 1 and 2 for the specific heat CV is very small, but the specific heat CP

depends strongly on the choice of the potential. The potential 2 gives the higher thermal
expansion coefficient and lattice parameter than the potential 1, therefore the specific
heat CP has the higher values. We see that the large difference in O2− −O2− interatomic
potential of potentials 1 and 2 (the exponential term corresponds to the electron cloud
overlap term,A exp(−r/B), and the attractive term, Cij/r

6,) determined the role of the
various contributions to the thermodynamic properties of the cubic zirconia.

3.2. Dipole polarization effects

We have investigated here the influence of the dipole polarization effects on the
thermodynamic properties of the cubic zirconia. The calculated lattice constants by the
present SMM with dipole polarization effects are greater than those of calculations using
the SMM without dipole polarization effects. But the present SMM calculations with
dipole polarization effects for the bulk modulus using all two potentials give the smaller
values. The lattice constants increase due to the effect of the dipole interaction term (C/r6)
in the two potentials, therefore the bulk modulus becomes smaller. The contribution
of the dipole polarization effects on the lattice constants and the specific heat CV is
approximately ∼1 %, and ∼ 2 %, respectively, while this contribution ∼ 13-15 % (for
potential 1) and ∼ 15 – 17 % (for potential 2) for the bulk modulus, BT . For the thermal
expansion coefficient, α, and the specific heat at constant pressure, CP , the contribution
of the dipole polarization effects is larger, approximately ∼ 20 % (using potential 1) and
∼37-50 % (using potential 2) for α, and approximately ∼ 10 % (using potential 1) and
∼30-60 % (using potential 2) for CP , respectively. The effect of the dipole polarization is
to increase the temperature and stronger for the potential 2. The small dipoles that do
arise do so as a result of small displacement of the anions from the ideal lattice sites. The
dipole polarization effects are small to the lattice constants and the specific heat CV , but
large enough to the bulk modulus, BT , thermal expansion coefficient, α, and specific heat
at constant pressure, CP .
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The dipolar part of the potential model is much better defined because it has been
obtained from ab initio calculations [2]. When both dipole and quadruppole effects are
added the calculations of the some thermodynamic properties for the cubic zirconia (for
example the cubic equilibrium volume, . . . ) give a much better agreement with the exper-
imental results [2]. However, in cubic fluorite zirconia ZrO2 the polarization energies are
small and in the crystalline environment the high symmetry of the anion site may more
effectively cancel the induced quadruppole effects.

4. CONCLUSIONS

We have presented an analytic formulation for obtaining the thermodynamic quan-
tities of the cubic zirconia ZrO2 based on the statistical moment method in the statistical
physics. The present formalism takes into account the higher-order anharmonic terms in
the atomic displacements and it enables us to derive the various thermodynamic quan-
tities of the cubic zirconia for a wide temperature range (the cubic phase of zirconia is
stable between 2570 K and the melting temperature at 2980 K [28]. The analytic formulae
can be used not only for the cubic zirconia but also for other oxide materials with the
cubic fluorite structure. The calculated thermodynamic quantities of the cubic zirconia
are in good agreement with the experimental results as well as with those by ab initio
calculations (in some cases, better results by the present method).

The two inter-atomic potentials (potentials 1 and 2) used in this study give small
differences in the lattice parameter, specific heat CV , but give the larger differences in
the linear thermal expansion coefficient, α, bulk modulus, BT , specific heat at constant
pressure, CP ,. This is mainly due to the large difference between the O2−−O2− potential
interactions of potentials 1 and 2. In the present study, the influence of the dipole polar-
ization effects on the thermodynamic peoperties of the cubic zirconia have been studied.
The SMM calculation with the dipolar term is necessary in order to explain all the data
we have from experiments and simulation calculations.
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