CHUYỂN MẠCH QUANG LỰA CHỌN BƯỚC SÓNG SỬ DỤNG BỘ VI-CÔNG HƯỚNG RING VÀ THIẾT BỊ GIAO THOA ĐÀ MODE 3 × 3 MMI

LÊ TRUNG THÀNH

1. ĐẶT VĂN DỄ

Trong những năm gần đây, các thiết bị vi công hướng Ring (microring resonators-MRs) được ứng dụng rất rộng rãi và đã được ứng dụng làm cơ sở cho thiết kế hầu hết các thiết bị quang với chất lượng cao trong hệ thống thông tin quang và quang tích hợp như ứng dụng các bộ lọc quang, các bộ định tuyến và chuyển mạch quang, bộ điều chế quang, và các bộ ghép kênh-tách kênh quang [1, 2]. Trong [3], chuyển mạch lưa chọn bước sóng sử dụng MR dùng bộ ghép định hướng đã được thiết kế và chế tạo trên công nghệ SOI (Silicon on Insulator). Tuy vậy, hầu hết các MR được chế tạo cho đến nay đều sử dụng các bộ ghép định hướng (Directional coupler) [4]. Gần đây, các chuyển mạch lưa chọn bước sóng với công suất chuyển mạch cực thấp và tỉ số phân biệt cao (extinction ratio) đã được thiết kế [5, 6] dùng MRs dựa trên các bộ ghép giao thoa đa mode 2 × 2 MMI. Điều này cho phép sử dụng các ưu điểm tuyệt vời của MMI so với bộ ghép định hướng như sự ổn định chế tạo cho phép cao, dễ dàng tích hợp với các thiết bị khác trong mạch quang, kích thước cực nhỏ và suy hao thấp [7, 8].

Trong bài báo này, chúng tôi sẽ phân tích và thiết kế một cấu trúc chuyển mạch quang mới lưa chọn bước sóng sử dụng MR và bộ ghép 3 × 3 MMI. Để có thể dễ dàng thực hiện với các thiết bị điện tử hiện có, dễ dàng tích hợp với hệ thống thông tin quang và tận dụng được công nghệ chế tạo vi mạch, thiết bị được thiết kế và mô phỏng trên công nghệ SOI. Sử dụng hiệu ứng nieft quang trên silicon có thể số nhất quang cao, các chuyển mạch quang lưa chọn bước sóng với công suất chuyển mạch thấp có thể đạt được từ cấu trúc này.

2. PHÂN TÍCH VÀ THIẾT KẾ

Cấu trúc của một bộ chuyển mạch lưa chọn bước sóng sử dụng MR và bộ ghép 3 × 3 MMI, cùng với cấu trúc của bộ di pha được mô tả ở hình 1(a) và (b) trong ương dưới đây.

Ô hình 1. L_{MMI} là chiều dài của bộ ghép MMI, a_i, b_i (i = 1 ÷ 3) là các biến đổi phúc của tần hiệu ở đầu vào và đầu ra của bộ ghép, và R là bán kính Ring. H là chiều cao rib, r = h / H là hệ số bước (step factor), n_i là chỉ số chất suất của Si, n_1 = 3.48, và n_2 là chỉ số chất suất của SiO_2, n_2 = 1.46.

Giá sử các ống dẫn sóng quang ở đầu vào và ra là các ống dẫn sóng đơn mode, bộ ghép 3x3 MMI được đạc trung có ma trận truyền dẫn M sau [9].

39
trong đó, các hệ số \(m_{ij} \) \((i, j = 1 \div 3)\) thể hiện lượng tín hiệu được ghép từ các tín hiệu ở các cổng đầu vào \(a_i\) tới các cổng đầu ra \(b_j\).

\[
M = \begin{pmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{pmatrix}
\]

(1)

\[L_{\text{MMI}} = \frac{L_{\pi}}{4n_r W_{\text{cl}}}\]

(2)

\[\beta \approx kn_r \frac{(\nu + 1)^2 \pi \lambda}{4n_r W_{\text{cl}}}\]

(3)

Đưa vào nguyên lý giao thoa tổng quát (general interference) [7], để có được công suất bang nhau tại tất cả các cổng đầu ra của \(3 \times 3\) MMI thì mỗi cổng đầu vào và đầu ra cách nhau tương ứng một đoạn \(D = W_{\text{MMI}} / 3\), và chiều dài tối thiểu của MMI phải được chọn là

\[L_{\text{MMI}} = \frac{L_{\pi}}{4n_r W_{\text{cl}}}\]

(2)

trong đó, \(W_{\text{MMI}}\) là chiều rộng của \(3 \times 3\) MMI và \(L_{\pi} = \frac{\pi}{\beta - \beta'} = \frac{4n_r W^2}{3\lambda}\) là chiều dài phách (beat length) của hai mode bắc thập nhất của MMI. \(\beta\) là hàng số truyền lan và được tính từ phương trình tán sáu trong ông dẫn sóng đa mode [10, 11]

\[\beta \approx kn_r \frac{(\nu + 1)^2 \pi \lambda}{4n_r W_{\text{cl}}}\]

(3)

với \(n_r\) là chỉ số chất suất miền lỗi dẫn sóng của MMI, \(k = 2\pi / \lambda\), \(\lambda\) là bước sóng quang. \(W_{\text{cl}}\) là độ rộng hiệu ứng của mode \(\nu\), với \(\nu = 0 \div N-1\) và \(N\) là số mode được truyền trong miền MMI.

Đưa vào các tính toán trên, ma trận truyền dẫn đặc trưng cho \(3 \times 3\) MMI tính được là
\[
M = \begin{pmatrix}
\frac{1}{\sqrt{3}} e^{i(0 - 11\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 13\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 5\pi / 24)} \\
\frac{1}{\sqrt{3}} e^{i(0 - 13\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 5\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 11\pi / 24)} \\
\frac{1}{\sqrt{3}} e^{i(0 - 5\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 11\pi / 24)} & \frac{1}{\sqrt{3}} e^{i(0 - 13\pi / 24)}
\end{pmatrix}
\]

Với \(\theta = -\beta_0 L_{MM1} + \frac{9\pi}{24} \) là pha tín hiệu khi truyền qua MMI. Từ đó, mối quan hệ giữa biên độ tín hiệu phục tại các cổng ra và vào của MMI được tính theo

\[
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix} =
\begin{pmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix} = M
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\]

và

\[
a_3 = \alpha \exp(i\phi)b_3
\]

trong đó, \(\alpha = \exp(-\alpha_0 (2\pi R + L_{MM1})) \) là suy hao truyền dân trong vòng Ring, \(\alpha_0 \) (dB/cm) là hệ số suy hao quang, \(\phi = \beta (2\pi R + L_{MM1}) + \Delta \phi \) là pha tín hiệu sau khi truyền qua vòng Ring và bộ di pha với hàng số truyền lên \(\beta \), \(\beta = 2\pi n_{eff} / \lambda \), \(n_{eff} \) là chiều dài hiệu dụng của mode cơ bản trong ứng dân sóng quang. Khi điện áp \(V \) hay công suất \(P \) đặt vào bộ di pha sẽ tạo ra một lượng di pha \(\Delta \phi \) theo hiệu ứng nhiet quang được tính như sau [5]

\[
\Delta \phi = \pi \frac{V}{V_n}
\]

ở đây \(V_n \) (hay công suất \(P_n \)) là điện áp (hay công suất) cần đặt vào bộ di pha để tạo ra một độ di pha \(\pi \). \(P_n \) được tính theo công thức

\[
P_n = \lambda k_{Si} \left(\frac{W_H}{2t} + \frac{L_{th}}{L_H} \right) \left| \frac{\partial n}{\partial T} \right|
\]

trong đó \(\partial n / \partial T \) là hệ số nhiệt quang của Silicon, \(\partial n / \partial T = +1,86.10^{-4} \ \text{K}^{-1} \) tại bước sóng \(\lambda = 1550 \ \text{nm} \). \(W_H \), \(L_H \) tương ứng là chiều rộng và chiều dài của cực nhiệt độ (heater), \(t \) là chiều cao của lớp đệm oxit SiO\(_2\). \(L_{th} \) là chiều dài của phần nhiệt trái ra ngoài cực nhiệt và được tính gần đúng theo

\[
L_{th} = \sqrt{ht} \sqrt{\frac{k_{Si}}{k_{SiO_2}}}
\]

với \(k_{Si} \) và \(k_{SiO_2} \) tương ứng là độ dẫn nhiệt của Si và SiO\(_2\).

Tần số cắt và thời gian đáp ứng được tính trực tiếp từ công suất chuyển mạch là

\[
f_{cut-off} = \frac{P_n}{\pi \lambda \rho_{SiO_2} C_{SiO_2} A_H} \left(|\partial n / \partial T| \right)
\]
\[
\tau = \frac{1}{e.f_{\text{on-off}}}
\]

ở đây, \(\rho_{SiO_2}\) và \(C_{SiO_2}\) là mật độ nhiệt và nhiệt dung riêng của \(SiO_2\), \(\rho_{SiO_2} = 2.203 \text{ g/cm}^3\), và \(C_{SiO_2} = 0.703 J / g.K\); \(A_{H}\) là diện tích phần được đốt nóng, được tính theo

\[
A_{H} = (2L_{m} + W_{H})(H + t_{SiO_2}).
\]

Từ các phương trình (5)-(12), ta tính được tần số phát xạ tại các công đầu ra 1 và 2 tương ứng là

\[
b_1 = (m_{11} + \frac{m_{13}m_{33}ae^{i\theta}}{1 - m_{33}ae^{i\theta}})a_1 + (m_{12} + \frac{m_{13}m_{32}ae^{i\theta}}{1 - m_{33}ae^{i\theta}})a_2
\]

\[
b_2 = (m_{21} + \frac{m_{23}m_{31}ae^{i\theta}}{1 - m_{33}ae^{i\theta}})a_1 + (m_{22} + \frac{m_{23}m_{32}ae^{i\theta}}{1 - m_{33}ae^{i\theta}})a_2
\]

Đồng thời, công suất quang tại các công đầu ra 1 và 2 tương ứng được tính như sau

\[
T_1 = |b_1|^2 \text{ và } T_2 = |b_2|^2.
\]

Bằng cách thay đổi điện áp đặt vào bộ di pha, ta có thể cố định hướng quang của bộ vi công hưởng sẽ được thay đổi tương ứng. Điều này có nghĩa là, ta có thể thay đổi bước sóng chuyển mạch bằng cách thay đổi điện áp điều khiển V và một bộ chuyển mạch lựa chọn bước sóng có thể đạt được từ trước tính này.

3. KẾT QUẢ MÔ PHÔNG VÀ THÁO LUẬN

Trong phần này chúng tôi thiết kế và mô phỏng thiết bị trên công nghệ SOI. Phương pháp BPM (Beam Propagation Method) [12] được sử dụng để tạo ước hoà hoạt động của MMI. Các tham số được dùng trong mô phỏng như sau: Các công đầu vào và ra của thiết bị được nói với sự quang đon mode, đồng thời việc chọn các tham số của ống dẫn sóng quang nhằm đảm bảo điều kiện đon mode là cực kì quan trọng để đạt được một thiết bị phát cao hơn của chuyển mạch. Qua nhiều mô phỏng cấu trúc ông dẫn sóng với các tham số cấu trúc khác nhau, các tham số đạt được hiệu quả dưới sự điều chỉnh lý thuyết là 0.6, và độ rộng của các ông dẫn sóng cấu tạo vào ra của thiết bị là \(w = 2\mu m\). Bản tính của Ring được chọn đủ lớn để giảm suy hao, \(R = 400 \mu m\). Các mô phỏng được thực hiện với hệ số suy hao khoảng \(a_0 = 1 \text{ dB/cm}\). Chiều rộng của MMI, \(W_{\text{MMI}} = 24 \mu m\), và khi độ chịu đầu của MMI tính được là \(L_{\text{MMI}} = 1722 \mu m\) theo công thức là \(L_{\text{MMI}} = \frac{n_{\text{eff}}}{\lambda} = 1550 \text{ nm}\) khi huấn mô phỏng số bằng phương pháp BPM cho tần hiểu truyền trong MMI, chiều dài của MMI được tính từ là \(L_{\text{MMI}} = L_x = 1790 \mu m\) như được chỉ ra trên hình 2.

Hình 2(a), (b) và (c) mô phỏng đường contour của mode cơ bản trong ông dẫn sóng tại công đầu vào 2 của MMI, tương trong miền đầu mode MMI và tương tại ba công đầu ra 1, 2 và 3 tương ứng của MMI. Việc chọn các tham số kích thước của ông dẫn sóng để đảm bảo điều kiện đon mode có ảnh hưởng lớn đến hoạt động của MMI và của chuyển mạch. Khi điều kiện đon mode được đảm bảo, chất lượng chuyển mạch được nâng cao và đảm bảo hoạt động của MMI theo thiết kế. Chỉnh số chất siết hiểu đáng của mode cơ bản trong ông dẫn sóng Ring được tính theo phương pháp FDM (Finite Difference Method) là \(n_{\text{eff}} = 3.4557\). Tại khoảng cách \(L_{\text{MMI}} = L_x = 1790 \mu m\), tần hiểu từ công đầu vào 2 được chia đều ra 3 công đầu ra như trên hình 2.
Hình 2. (a) Contour của mode trong ống dẫn sóng ở các cổng đầu vào 2 của MMI, (b) trường trong MMI, và (c) contour mode tại các cổng đầu ra của MMI

Hình 3. (a) Contour của mode trong ống dẫn sóng ở cổng đầu vào 1 của MMI và trường trong MMI
Tương tự, tài chiều dài của MMI được chọn như trên, khi kích thích tín hiệu vào đầu vào 1 và 3, tín hiệu sẽ được chia đều tại các công đầu ra tương ứng như được chỉ ra trên hình 3, và 4.

Hình 4. (a) Contour của mode trong ống dẫn song ở công đầu vào 3 của MMI và trường trong MMI

Hình 5. (a) công suất ra (chuan hoa) tại công 1 và (b) tại công 2 của MMI phụ thuộc vào công suất điện đặt vào heater tại bước sóng, $\lambda = 1.55 \mu m$, trong trường hợp tín hiệu được đưa vào ở công 1

Hình 5 và 6 mô phỏng công suất tín hiệu ra (chuan hoa) tại các công 1 và 2 trong trường hợp tín hiệu vào được kích thích tại công 1 và 2 tương ứng. Công suất P_{out} tính được từ (8) là 46 mW. Kết quả mô phỏng cho thấy, thiết bị hoạt động như một bộ chuyển mạch với tỷ số sống mở (on-off ratio) xấp xỉ 18 dB khi tín hiệu được đưa vào công 1 và ra ở công 1 với công suất chuyển mạch 7 mW, và khi tín hiệu vào ở công 1 và ra ở công 2 với công suất chuyển mạch
83 mW, trong ống. Đây là điện áp nhỏ nhất có thể đạt được cho đến thời điểm nay, theo như hiểu biết của chúng tôi. Như vậy, phụ thuộc vào điện áp điều khiển \(V \) (hay công suất \(P \)) đặt vào bộ di pha ta có thể điều khiển được tín hiệu ra ở công 1 và 2 theo mong muốn với công suất điều khiển thấp và tỉ số đồng mô cao. Động thời thời gian đáp ứng của chuyển mạch là khá nhanh \(\tau = 33.4 \, \mu s \).

Hình 6. (a) công suất ra (chuẩn hoá) tại công 1 và (b) tại công 2 của MMI phụ thuộc vào công suất điện đặt vào heater tại bước sóng \(\lambda = 1.55 \, \mu m \), trong trường hợp tín hiệu được đưa vào ở công 2

Bằng cách thay đổi điện áp điều khiển \(V \), tăng số hướng của mạch vi công suất điều khiển trong ống. Qua tính toán thấy rằng chỉ cần đổi điện áp từ 0 đến 92 mW ta có thể điều khiển bước sóng công hưởng diệt đại từ từ 0 đến \(\pm 20 \) nm, tương đương với FSR (Free Spectral Range) của thiết bị. Như được mô phỏng trên hình 7 và hình 8, công suất chuẩn hoá của tín hiệu tại các công đầu ra 1 và 2 phụ thuộc vào bước sóng quang tại các giá trị công suất điện điều khiển khác nhau là 0 mW, 23 mW và 46 mW. Kết quả mô phỏng cho thấy, không những thiết bị thực hiện chức năng chuyển mạch mà đồng thời còn thực hiện chức năng như một bộ lọc có thể biến đổi được (tunable) với công suất điều khiển thấp.

Hình 7. (a) công suất chuẩn hoá tại công ra 1 và (b) tại công ra 2 khi tín hiệu vào công 1, tại các điện áp điều khiển 0 mW, 23 mW và 46 mW, trong ống

Hình 8. (a) công suất chuẩn hoá tại công ra 1 và (b) tại công ra 2 khi tín hiệu vào công 2, tại các điện áp điều khiển 0 mW, 23 mW và 46 mW, trong ống
Để thấy rõ ưu điểm của thiết bị được thiết kế trong bài báo này, chúng tôi thực hiện so sánh nó với cấu trúc chuyển mạc truyền thông sử dụng cấu hình Mach-Zehnder như hình 9 dưới đây.

![Hình 9. Cấu trúc chuyển mạc thực hiện bằng MZI (Mach Zehnder Interferometer)](image)

Biến độ phục đầu ra b_1, b_2 trên hình 9 quan hệ với biến độ phục đầu vào a_1 và a_2, theo [5]

$$
\begin{pmatrix}
 b_1 \\
 b_2
\end{pmatrix} = \frac{1}{2} e^{-\alpha_0 L} \begin{pmatrix}
 1 & j \\
 j & 1
\end{pmatrix} \begin{pmatrix}
 e^{j\Delta \phi} & 0 \\
 0 & e^{-j\Delta \phi}
\end{pmatrix} \begin{pmatrix}
 1 & j \\
 j & 1
\end{pmatrix} \begin{pmatrix}
 a_1 \\
 a_2
\end{pmatrix}
$$

(16)

Từ đó, công suất tại cổng ra 1 và 2 của chuyển mạc MZI khi tín hiệu được đưa vào cổng 1 là

$$P_1 = e^{-2\alpha_0 L} \sin^2 \left(\frac{\Delta \phi}{2} \right),$$

và

$$P_2 = e^{-2\alpha_0 L} \cos^2 \left(\frac{\Delta \phi}{2} \right),$$

(17)

trong đó $\Delta \phi$ được tính theo (7), L là chiều dài cánh MZI.

Hình 10 so sánh hoạt động của chuyển mạc dừa trên MZI với cấu trúc của được đưa ra.

![Hình 10. So sánh cấu trúc chuyển mạc dừa trên MZI và cấu trúc được đưa ra trong bài báo](image)

Rõ ràng là công suất chuyển mạc dừa đã được giảm đáng kể so với chuyển mạch truyền thông sử dụng MZI. Công suất giảm xấp xỉ gần $10mW$. Tuy nhiên một trong ưu điểm nổi bật của chuyển mạc mà chúng tôi đưa ra trong bài báo này là nó có thể thực hiện chức năng lựa chọn bước sóng dừa vào việc điều khiển bước sóng công hưởng của mạc vi công hưởng thông qua điện áp điều khiển. Do vậy, cấu trúc được đưa ra có thể được ứng dụng rộng rãi trong hệ thống
thông tin quang tốc độ cao trong tương lai như dùng làm bộ lọc biến đổi, bộ chuyển mạch và dùng làm bộ điều chế quang tốc độ cao.

4. KẾT LUẬN

Bài báo đã đưa ra một cấu trúc vi cống hướng quang thực hiện chức năng chuyển mạch lựa chọn bước sóng biến đổi được sử dụng bộ ghép 3 × 3 MMI. Thiết bị đã được thiết kế trên công nghệ SOI và mở phòng bằng phương pháp BPM với độ chính xác cao. Dựa trên các ưu điểm của SOI, thiết bị có thể thực hiện chức năng chuyển mạch lựa chọn bước sóng với tốc độ cao và công suất thấp. Đồng thời, bằng cách thay đổi điều áp điện khiến đặt vào bộ đi pha, thiết bị cũng thực hiện chức năng như một bộ lọc biến đổi. Đặc tính này hữu hiệu nhất trong ứng dụng rộng rãi của cấu trúc được đưa ra trong các mạng thông tin quang tốc độ cao trong tương lai.

TÀI LIỆU THAM KHẢO

SUMMARY

WAVELENGTH SELECTIVE OPTICAL SWITCHES USING 3×3 MULTIMODE INTERFERENCE COUPLERS BASED MICRORING RESONATORS

A wavelength selective optical switch is developed based on a microring resonator using 3×3 multimode interference (MMI) couplers in this paper. The device was designed using a silicon-on-insulator (SOI) single-mode rib waveguide. The switching function can be achieved by using the thermo-optic effect making use of the large thermo-optic coefficient of silicon. A very high performance of the switch with a low switching power and fast response can be obtained by using this structure.

Keywords: Integrated optics, optical switch, multimode interference (MMI) couplers, ring resonator.

Địa chỉ: Nhân bài ngày 22 tháng 5 năm 2007
Đại học Giao thông Văn tài Hà Nội.